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Chapter I. General introduction 

Introduction 

Chemists are inspired by the amazing systems present in nature, and biologists are 

using tmethods developed by chemists to study these systems. The tools of chemistry and 

biology are combined all the time to probe biological problems. Both chemistry and 

biology continue to grow and draw inspiration from each other as answers create more 

questions.  

There are many applications of chemical reagents in biology. It is not the purpose 

of this introduction to review all these applications; some of them will be mentioned to 

emphasize the relevance of chemical reagents for the study of biological systems. 

Chemical reagents are an essential complement to all the techniques that biologists have 

developed to facilitate the selective study of biomolecules in native contexts. Chemical 

reagents are employed because they are more readily available than many biomolecules 

(for example enzymes), their properties can be adjusted, they can usually be synthesized 

in large quantities, their size can be varied, and sometime of course they have useful 

properties that are not exhibited by natural compounds. One of the main characteristics of 

synthetic chemistry is control over molecular structure and function. The combined 

efforts of many chemists lead to the development of sophisticated strategies that make 

possible the synthesis of a vast number of compounds and the tailoring of their 

properties, which are huge advantages when designing reagents for certain tasks. It is not 

an easy task to modulate the properties of proteins, DNA, RNA, or other large 

biomolecules, and probably this is one of the biggest advantages of chemical reagents.  
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Many applications of chemical reagents in biology are in the study of structure of 

biomolecules, and consequently how biomolecules interact with each other. Structure and 

function are intimately connected, and ultimately, the structure of biomolecules reveals 

how they perform their function. Chemical reagents are used to determine the primary 

sequence of biomolecules, analyze their three dimensional structure, and to dissect their 

interaction with other biomolecules. 

 Modification of biomolecules with chemical reagents is the main approach 

mentioned in this thesis and it is widely used in the study of proteins and nucleic acids.1-3 

Site specific chemical modification of proteins is a very useful tool in proteomics. For 

example mass spectrometric analysis is used in combination with different chemical 

modifications, or incorporation of isotope-coded affinity tags.4,5 Chemical labeling with 

fluorescent probes is employed in analyzing conformational changes in biomolecules.6-8 

Conformational changes in nucleic acids during folding or interaction with other 

molecules are explored with base-specific chemical probes.1,9,10 More details about base-

specific probing of RNA will be presented in Chapter V.  

Cleavage of biomolecules is a useful chemical modification, and since this 

approach is used prominently with proteins and RNA in this thesis, some examples of 

applications of cleavage reagents are discussed. Cleavage of biomolecules is an important 

step in the determination of their primary sequences.11 Footprinting and folding studies 

use changes in the cleavage pattern to obtain structural information.12-15 For proteins, 

cleavage reagents are also used in other applications. Protein digests are used in 

proteomics for peptide mapping.16 Fusion tags are removed by site-specific cleavage 

from engineered proteins to convert them to their native form.17 Fragments of natural 
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proteins are ligated with other natural or synthesized fragments in protein 

semisynthesis.18 

 Enzymes and ribozymes are highly selective and efficient catalysts, but chemical 

reagents have a prominent place in the study of biological systems. Indeed, many of the 

reactions performed by chemical reagents are performed better by enzymes and 

ribozymes, but size, reaction conditions or even availability can make the utilization of 

chemical reagents more suitable.  

Dissertation organization 
 

The first chapter of this dissertation presents some applications of chemical 

reagents in biological sciences. This dissertation is composed of two different parts. The 

first part presents the work that I have done under the supervision of Dr. Nenad Kostić, 

on cis-[Pt(en)(H2O)2]2+ as a peptide cleavage reagent. Chapter II is a review on Pt(II) and 

Pd(II) complexes as synthetic proteases. Our work on cis-[Pt(en)(H2O)2]2+ produced three 

papers,19-21 one of which is included as Chapter III, and was published in Inorganic 

Chemistry.21 The other two,19,20 which resulted from my collaboration with Nebojsa 

Milović, will not be reproduced here since they are include in his thesis. In one of the 

papers published with Nebojsa Milović, the activity of cis-[Pt(en)(H2O)2]2+ as a peptide 

cleavage reagent is described, along with its selectivity and mechanism of cleavage, and 

it was published in Chemistry-A European Journal.19 Our results for the combined use of 

platinum(II) and palladium(II) complexes as selective cleavage reagents were published 

in Inorganic Chemistry.20 The third paper, which is included here, is a collaboration with 

Dr. Nicola Pohl’s group on the influence of different types of irradiation on cleavage of 

peptides and proteins by cis-[Pt(en)(H2O)2]2+. Kwang-Seuk Ko helped in the experiments 
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involving cleavage under microwave irradiation. Dr. Nicola Pohl suggested the cleavage 

of peptides and proteins under microwave irradiation. Dr. Nenad Kostić got the 

suggestion to try cleavage under ultraviolet irradiation at a conference. Chapter IV 

summarizes our findings on Pt(II) reagents as synthetic proteases. 

My work with Dr. Gloria Culver focused on protein-RNA interactions during 

assembly of the small subunit of the prokaryotic ribosome. Chapter V is a general 

introduction on the small 30S subunit of the ribosome and methods to explore RNA-

protein interactions, including techniques that involve chemical reagents. Chapter VI 

presents our results on the study of interaction of 16S rRNA with primary binding 

ribosomal proteins (r-protein) at different temperatures. The interaction of individual 

primary r-proteins with 16S rRNA is studied by base specific chemical footprinting at 

low and high temperatures. For this study, the experiments involving r-protein S15 were 

performed by Indu Jagannathan, and some of the experiments involving r-protein S8 

were done by Joel Grondek. We also used directed hydroxyl radical probing to study 

changes in the architecture of 16S rRNA surrounding S20 during assembly of the 30S 

subunit. A new approach in the exploration of RNPs of different complexities by directed 

hydroxyl radical probing and our preliminary results are presented in chapter VII. A 

summary of our results obtained in the study of RNA-protein interactions and some 

future directions constitute the last chapter. 
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Chapter II. Chemical reagents as selective protein cleavers - Pt(II) 

complexes 

Introduction 

Selective proteolysis can be achieved with both enzymes and synthetic reagents.1 

While enzymes have advantages, as being fast, selective and effective in mild conditions, 

sometime they contaminate the biological samples, and may lack the required selectivity 

or functionality in the desired conditions. As an alternative for enzymatic digestion, 

chemical reagents are an important tool for selective cleavage of proteins. However, 

developing new protein cleavage reagents is not a trivial task. The peptide bond is 

extremely unreactive toward hydrolysis and even nonselective cleavage is hard to 

achieve. Under standard conditions, (room temperature, pH 4-8) the half-life for 

hydrolysis of a simple peptide is 500-1000 years.2 A few chemical reagents are available 

for cleavage of proteins,1 but new chemical reagents with improved efficiency and 

adjustable selectivity are highly desired. A wide range of proteolyic reagents are 

necessary. Some applications require long fragments, while other require short ones. In 

some cases, it is necessary to obtain an unmodified fragment, while sometimes it is 

desirable to have modified termini. The conditions in which the cleavage takes place also 

differ; sometimes neutral pH is required, while other applications necessitate acidic pH or 

the presence of detergents.  

Transitional metal complexes are emerging as selective proteolytic reagents.3 

Coordination compounds of Pd(II) and Pt(II) promote hydrolytic cleavage of amide 

bonds in peptides and proteins.4-18 Because, Pd(II) ions are more labile than Pt(II) ions, 
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many studies focused on Pd(II) complexes, to take advantage of their higher reactivity. 

Recently, we have shown that Pt(II) complexes (with ethylenediamine or 1,3-

bis(methylthio)propane as ligands), can be as efficient as Pd(II) complexes in the 

cleavage of peptide bonds, albeit with different selectivity.14,15,18 

In this chapter, a short summary of our findings on the cleavage of peptides and 

proteins by complexes of Pd(II) and cis-[Pt(en)(H2O)2]2+ is presented. 

Pt(II) and Pd(II) complexes. Requirements for efficient peptide bond 

cleavage 

Ideally, reagents that cleave peptide bonds should be selective, reactive and 

removable. In the case of Pt(II) and Pd(II) complexes, the selectivity of reagents is given 

by anchoring to the metal ion of only some of the amino acid side chains. After selective 

binding, the metal ion interacts with the target peptide bond and facilitates cleavage. In 

order to be hydrolytically active, complexes need at least two weakly coordinated 

ligands, such as water, that can be easily substituted. For charge balance, noncoordinating 

counterions such as perchlorate ion or tetrafluoroborate are necessary. Coordination of 

the amide nitrogen to the metal ion strengthens the peptide bond, while coordination of 

the amide oxygen weakens it.19 When a metal ion binds the amide oxygen, it enhances 

the partial positive charge on carbon and stabilizes the tetrahedral intermediate for 

hydrolysis.19 Thus, the metal ion should not displace the proton from the NH of the amide 

bond, but it should interact with the oxygen. The other possible scenario is to deliver a 

water molecule to hydrolyze the amide bond, but based on the studies to date, the first 

scenario is the most plausible.16  
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Pd(II) complexes as selective peptide bond cleavers 

Many complexes of Pd(II) were studied,6,8,10-12,20-24 and the most efficient 

cleavage reagent proved to be [Pd(H2O)4]2+.12 In weakly acidic aqueous solutions, 

cleavage by Pd(II) complexes takes place at the second amide bond upstream from 

histidine and methionine residues, that is, the X-Y bond in the sequence segments X-Y-

His-Z and X-Y-Met-Z, in which X, Y, and Z are any noncoordinating residues (Chart 1). 

When the pH is raised from mildly-acidic to neutral, cleavage takes place only in X-Pro-

His-Z and X-Pro-Met-Z sequences, where the Y residue is praline.16 In a different 

approach that does not involve binding of an aminoacid side chain to the metal ion, but 

utilizes a host guest interaction between cyclodextrin and an aromatic aminoacid, it was 

shown that a Pd(II)-cyclodextrin conjugate can cleave selectively the X-Pro bond in an 

X-Pro-Phe sequence.25 

Pd(II) complexes cleave at methionine, and hystidine,26 and they bind the N-

terminus of peptides or proteins, but this binding is not conducive to cleavage.13 The 

initial anchoring of Pd(II) ion facilitates the interaction with the upstream peptide bond, 

toward the N-terminus of the peptide (Figure 1, complex 1). The anchored Pd(II) ion 

facilitates deprotonation of  the amide NH group of the peptide bond upstream from the 

anchor, and binds the nitrogen atom of the resulting amidate anion, subsequently 

inhibiting hydrolysis of this peptide bond (Figure 1, complex 2). Pd(II) is considered the 

most efficient metal ion in displacing the proton of the amide nitrogen, with a pKa of ~ 2 

for the first bond and ~4 for the second peptide bond in triglycine.26-28 Since cleavage 

takes place at pH~2, the Pd(II) ion is not capable to displace the proton from the NH of 

the second amide bond (pKa ~4) upstream from the anchor, and promotes its hydrolysis, 
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probably by interaction with the amide oxygen.11,16 If other Pd(II) complexes as cis-

[Pd(en)(H2O)2]2+ (en is ethylenediamine) are used for cleavage of peptides and proteins, a 

lag time is observed. This delay arises from the relatively slow displacement of the 

bidentate ethylenediamine ligand by the donor atoms in the peptide.12 

cis-[Pt(en)(H2O)2]2+ as selective peptide bond cleaver 

 Pt(II) complexes, and in particular cis-[Pt(en)(H2O)2]2+ became the focus of our 

study as protein cleavage reagents by accident. Due to the high affinity of Pt(II) for sulfur 

ligands, Pt(II) complexes were considered suitable reagents for blocking cleavage by 

Pd(II) complexes at methionine. However, instead of preventing cleavage, they facilitated 

hydrolytic cleavage of peptide bonds with a different selectivity than Pd(II) complexes. 

In collaboration with Nebojsa Milović, the selectivity and the mechanism of cleavage by 

Pt(II) complexes were explored.15 A short summary of our findings on the cleavage of 

peptides and proteins by cis-[Pt(en)(H2O)2]2+ is presented. The complex of Pt(II) with 

1,3-bis(methylthio)propane instead of en as a ligand, was also used as a cleavage 

reagent.18 This complex has the same selectivity as cis-[Pt(en)(H2O)2]2+, but cleaves with 

a slower rate.14, 18 In my work cis-[Pt(en)(H2O)2]2+ was used, and subsequently this 

complex will be the focus of this section. 

The complex cis-[Pt(en)(H2O)2]2+ cleaves exclusively the Met-Z bond in peptides 

and proteins in weakly acidic solutions14(Chart 1). Proximity to the peptide bond is 

achieved by anchoring to a side chain, and consequently the selectivity of cleavage is 

governed by the selectivity of the binding to methionine side chains (Figure 2). In 

peptides and proteins cis-[Pt(en)(H2O)2]2+ can also bind the side chain of cysteine, beside 

the aforementioned methionine side-chain. Until now, no studies regarding cleavage 
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directed by cysteine were reported and all the peptides and proteins in which cleavage by 

cis-[Pt(en)(H2O)2]2+ was performed lacked cysteines. After binding of the Pt(II) reagent 

to the side chain of methionine and replacement of one of the water ligands by the sulfur 

atom, the Pt(II) ion will interact with the peptide bond downstream from the side chain.14 

The active complex is formed (Figure 2, complex 1), and hydrolytic cleavage of the first 

peptide bond downstream from the anchor will take place by interaction with the amide 

oxygen.14 The ethylendiamine ligand will stay bound to the Pt(II) ion all the time, in 

contrast to the case of Pd(II)12, as it was shown by NMR.12,14 After the cleavage takes 

place, the Pt(II) reagent can be removed and peptide fragments with unmodified termini 

are obtained. The cleavage takes place at a pH lower than 2.5.14 If the pH is higher than 

2.5, the Pt(II) ion will displace the proton of the amide NH group from the peptide bond 

upstream and form an inactive complex (Figure 2, complex 2). When the deprotonation 

of the amide NH group upstream takes place a stable six-membered ring is formed, while 

deprotonation of the downstream NH group would form a less stable seven-membered 

ring. The formation of the hydrolytically active and of the inactive complexes was shown 

by NMR.14 

Peptides and proteins were cleaved by cis-[Pt(en)(H2O)2]2+ at different 

temperatures (40 and 60oC ), at a pH of 2.5 in the presence and absence of sodium 

dodecylsulfate, a common reagent used for solubilization of proteins.14 Pt(II) and Pd(II) 

reagents were used in combination to cleave peptides and proteins, showing their 

applicability. cis-[Pt(en)(H2O)2]2+ was used to obtain long fragments, and [Pd(H2O)4]2+ 

was used for peptide mapping by mass spectrometry.15 
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Different selectivities of Pd(II) and Pt(II) reagents as peptide bond 

cleavers 

Pd(II) and Pt(II) compounds have been studied intensively, since they have many 

applications in chemistry, medicine or as industrial catalysts. Pt(II) and Pd(II) have a d8 

configuration, are diamagnetic and in the majority of their complexes have a square 

planar geometry.29 Consequently, they have quite similar chemical properties. There are a 

few exceptions, some of which are important for their activity as artificial peptidases, 

since they explain the different proteolytic activity of the two ions. In studies of ligand 

substitution it was shown that Pt(II) is inert to ligand substitution, while Pd(II) is much 

more labile. The rates for ligand substitution at Pd(II) are usually 105 times higher than 

those for similar Pt(II) complexes.29 Both metal ions are classified as “soft” Lewis acids, 

and they prefer “soft” ligands, such as sulfur donors to hard ligands, such as oxygen 

donors.4, 8, 28 Due to its larger size Pt(II) is “softer” than Pd(II).28 

A key difference between Pt(II) and Pd(II) ions as peptide cleavage reagents is 

their selectivity in binding amino acid side chains. Pt(II) will not bind the histidine side 

chain27 and subsequently will not cleave the adjacent peptide bond, because it prefers 

softer ligands like the sulfur atom. The second difference is that Pt(II) will cleave a 

peptide bond without “losing” its ethylenediamine ligand,14 while Pd(II) has to lose its 

ligand before effecting cleavage.12, 13 The pKa of the amide nitrogen in the presence of 

Pd(II) or Pt(II) is another important factor in their selectivity as peptide bond cleavers, as 

it was discussed above. 
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cis-[Pt(en)(H2O)2]2+ versus cyanogen bromide as selective peptide bond 

cleavers 

Cyanogen bromide, one of the widely utilized methionine selective protein 

cleavers,30, 31 and cis-[Pt(en)(H2O)2]2+ have the same selectivity, they both cleave the 

Met-Z bond.1,14,15 Even though they are similar in their proteolytic activity and reaction 

times, there are quite a few differences between them. Cyanogen bromide has to be 

present in high excess, up to 100 fold and it requires 70% trifluoroacetic acid or 100% 

acetic acid as solvent1. In contrast, cis-[Pt(en)(H2O)2]2+ is effective at one to one ratio for 

each methionine residue, and it cleaves at pH lower than 2.5 and temperatures between 

40 and 60oC.14,15 Moreover, cleavage by cyanogen bromide converts methionine to serine 

lactone, does not cleave Met-Pro bonds, and has quite a few side reactions. Pt(II) reagent 

does not modify methionine, cleaves at the C-terminus of methionine even when it is 

followed by proline, and no side reactions are reported for it. 

 Our studies showed that Pt(II) reagents cleave hydrolytically peptides and proteins. 

Their properties make them suitable for biochemical applications, such as peptide 

mapping or generation of long peptide fragments that can be used for chemical ligation or 

other purposes. 
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Chart 1. Different cleavage selectivity of Pd(II) and Pt(II) complexes. Reproduced with 

permission from Inorganic Chemistry 2003, 42, 4036-45. Copyright 2003 American 

Chemical Society. 
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Figure 1. Cleavage of peptide bond by Pd(II) complexes. Coordination to Pd(II) of the 

methionine side chain (the anchor) is followed by coordination of the deprotonated 

nitrogen atom in the peptide backbone upstream from the anchor forming the 

hydrolytically active complex (complex 2). The pH of the solution determines the next 

step. If pH<2, hydrolytic cleavage occurs. If pH>2, the stepwise coordination of the 

peptide backbone takes place, with the formation of hydrolytically inactive complexes 

(complexes 3 and 4). The initial ligands and charges on the Pd(II) complexes are not 

shown for clarity. 

 



www.manaraa.com

 

 

 
19 

 



www.manaraa.com

 

 

 
20 

Figure 2. Cleavage of peptide bond by Pt(II) complexes. Coordination to Pt(II) of the 

methionine side chain (the anchor) results in the formation of the active complex 

(complex 1), followed by hydrolytic cleavage if pH<2.5. At a pH>2.5 the coordination of 

the deprotonated nitrogen in the peptide backbone downstream of the anchor to Pt(II) will 

result in the formation of an inactive complex (complex 2).  
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Chapter III. Platinum(II) complex as an artificial peptidase: 

selective cleavage of peptides and a protein by cis-[Pt(en)(H2O)2]2+ 

ion under ultraviolet and microwave irradiation 

Laura-Mirela Dutcă, Kwang-Seuk Ko, Nicola L. Pohl, and Nenad M. Kostić 

Department of Chemistry, Gilman Hall, Iowa State University, Ames, IA 50011 

1A paper published in and reprinted from Inorganic Chemistry 2005, 44, 5141-51461 

Abstract 

 Two synthetic peptides were completely cleaved by the cis-[Pt(en)(H2O)2]2+ 

complex at pH 2.5 under thermal heating at 60oC in a selective way: only the amide 

bonds involving the carboxylic group of methionine residue, i.e., the Met-Z bonds (where 

the residue Z has a noncoordinating side chain) were hydrolyzed. Under irradiation at 300 

nm, the rate constants for these cleavage reactions were approximately doubled, but side 

reactions occurred. Under microwave irradiation, the rate constants were increased two to 

three times at 60oC and ca. seven times at 100oC, and no side reactions were detected. 

Microwave irradiation similarly accelerated the complete and selective cleavage of Met-Z 

bonds in cytochrome c at 60oC in comparison with this cleavage under thermal heating, 

again without detected side reactions. The microwave-assisted cleavage of peptides and 

proteins by the platinum(II) reagent holds promise in proteomics and other 

biotechnological applications. 

 

1 Copyright 2005 American Chemical Society 
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Introduction 

Selective cleavage of peptides and proteins is essential in many bioanalytical and 

bioengeneering applications. Protein sequencing, peptide mapping,1 folding studies,2 

protein semisynthesis,3 and purification of fusion proteins all involve selective cleavage 

of peptide bonds.4 The most desirable method of cleavage is hydrolysis of the amide 

group because the products of this reaction, namely amines and carboxylic acids, can be 

condensed into new products or otherwise chemically modified. Amide groups, however, 

are extremely unreactive toward hydrolysis; the half-life for peptide hydrolysis in the pH 

range from 4 to 8 is several hundred years.5 

A small number of proteolytic enzymes and synthetic reagents are available, but 

they do not meet all current needs. Enzymes, such as trypsin and chymotrypsin, are very 

effective catalysts, but they have shortcomings. Their selectivity is almost fixed and very 

difficult to change, they become inactive in the presence of detergents, they are 

incompatible with organic solvents, they digest themselves as well as the intended 

substrate, and they contaminate the products of substrate cleavage. Sometimes these 

products (peptides) are so short as to be unsuitable for chemical ligation and other 

applications. 

Chemical reagents are less effective than enzymes and have various 

disadvantages.6 The common reagent cyanogen bromide cleaves at the C-terminus of 

methionine residues, but irreversibly converts these residues to serine lactone; it is 

volatile and toxic; it is applied in very large excess over the methionine residues present 

in the substrate; it requires 100% formic acid or 70% trifluoroacetic acid as a solvent; and 
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it causes various side reactions.6 Polymers having catalytic groups, such as carboxylate, 

aldehyde, and imidazolyl, show some promise as artificial peptidases.7 

Transition-metal complexes have long been known to promote cleavage of 

peptide bonds, but their systematic study has only recently led to practical applications.8-

19 Currently, palladium(II) and platinum(II) complexes, in particular [Pd(H2O)4]2+,  cis-

[Pd(en)(H2O)2]2+, and cis-[Pt(en)(H2O)2]2+, are the most effective inorganic reagents for 

protein cleavage.14,20-26 Palladium(II) complexes have been studied in some detail. They 

spontaneously bind to methionine and histidine side chains and regioselectively promote 

hydrolytic cleavage of the second amide bond preceding this anchoring residue (in the 

direction of the amino terminus), that is, the X-Y bond in the X-Y-Met-Z and X-Y-His-Z 

sequences in which X, Y, and Z have noncoordinating side chains.21-23,26 If Y is the 

proline residue, [Pd(H2O)4]2+ can cleave the X-Pro bond at neutral pH.23 The properties of 

the complexes can be adjusted, and they can cleave even in the presence of detergents24 

or in organic solvents.27 Conjugates of Pd(II) complex and β-cyclodextrin can cleave 

selectively the X-Pro bond in the X-Pro-Ar sequence, where Ar is an aromatic residue, at 

neutral pH.26 Kinetic and stereochemical evidence suggests that palladium(II) ion, as a 

Lewis acid, interacts with the carbonyl oxygen, thus polarizing the scissile amide group 

and facilitating nucleophilic attack of solvent water at the carbon atom.23  

The study of platinum(II) complexes has only begun, and the results are 

interesting and unexpected.24,25 Similar complexes of platinum(II) and palladium(II) 

generally undergo similar ligand-displacement reactions, but the former reacts much 

more slowly than the latter.28 Surprisingly, the regioselectivity of cis-[Pt(en)(H2O)2]2+ 

completely differs from that of cis-[Pd(en)(H2O)2]2+, stated above. The platinum(II) 
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complex binds only to methionine side chains and promotes hydrolytic cleavage of the 

first amide bond following  this anchoring residue (in the direction of the carboxy 

terminus), that is, the Met-Z bonds, where Z is a noncoordinating residue.24,25 This stark 

difference in regioselectivity can be attributed to the aforementioned difference between 

the metal ions. Because the platinum(II) complex is much more inert than its 

palladium(II) analog, the ethylenediamine ligand remains coordinated to the platinum(II) 

ion throughout the cleavage reaction, whereas this ligand is displaced by water at the 

palladium(II) ion early in the reaction. 

 The hydrolytic cleavage of proteins by cis-[Pt(en)(H2O)2]2+ complex is 

regioselective, but the reaction takes up to 24 h for completion, depending on the 

substrate and the reaction conditions. Although enzymes and conventional chemical 

agents require similar periods of time, we sought to make the platinum(II) reagent act 

faster. Even a twofold decrease in the reaction times would be a practical improvement. 

Slow chemical reactions can be accelerated by energizing the reactants, creating reactive 

intermediates, or stabilizing the products. Besides thermal heating, there is high pressure 

and irradiations with light, ultrasound, and microwaves. In most of these methods, energy 

in different forms is supplied to the reactants.29  

Microwave (or dielectric) heating uses the ability of some compounds to 

transform electromagnetic energy into heat in situ. This is emerging as a new and 

promising method of accelerating chemical reactions.30,31 The effect of temperature on 

the reaction rates is well known, but the effect of microwaves is not understood. 

Microwave irradiation can act through thermal effects or specific microwave effects. 

Thermal effects or dielectric heating can result from the interaction of polar molecules 
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with the electromagnetic field. In liquids, only polar molecules selectively absorb the 

microwaves. Specific microwave effects are non-thermal, akin to the effects of the 

medium on the reaction mechanisms.32 

In this study we explored the effects of ultraviolet light and demonstrated the effects of 

microwaves in accelerating selective cleavage of peptides and a protein by the cis-

[Pt(en)(H2O)2]2+ ion. 

Experimental procedures 

Chemicals. The complex cis-[Pt(en)Cl2] (en is ethylendiamine), piperidine, and 

α-cyano-4-hydroxycinnamic acid were obtained from Aldrich Chemical Co. The complex 

cis-[Pt(en)(H2O)2]2+ was prepared by the published procedure as a perchlorate salt.33,34 Its 

concentration was determined using the published absorptivity (extinction coefficient). 

Equine cytochrome c was obtained from Sigma Chemical Co. Trifluoroacetic acid was 

obtained from Alfa Aesar. Acetonitrile of HPLC grade was obtained from Fisher 

Scientific Co. All the Fmoc-amino acids, 1-[bis(dimethylamino)methylene]-1H-

benzotriazoliumhexafluorophosphate(1-)3-oxide, 1-hydroxy-1,2,3-benzotriazole, 

FmocAla-Wang resin, and FmocGly-Wang resin, used in the synthesis of peptides, were 

purchased from Novabiochem. 

The nonapeptide AcGly-Lys-Ala-Met-Ala-Ala-Pro-Arg-Gly (AcGKAMAAPRG) 

and the decapeptide AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala 

(AcAKYGGMAARA) were synthesized by a standard manual Fmoc solid-phase 

procedure and purified by reverse-phase HPLC on a C18 preparative column, as 

described previously.21,22 The purity, examined by analytical HPLC, was higher than 
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99.5%. For the nonapeptide the found and calculated masses were, respectively, 901.84 

and 901.07; for the decapeptide, 1036.57 and 1036.51 Da.  

HPLC Separations. The components of the reaction mixtures were separated by 

a Hewlett Packard 1100 HPLC system containing an autosampler and a multiwavelength 

detector set to 215, 270, and 410 nm. Absorption at 215 nm is common to all peptides 

and proteins; absorption at 270 nm is due to aromatic residues and Pt(II) complex; and 

absorption at 410 nm is diagnostic of heme. The reverse-phase separations were done 

with an analytical Supelco Discovery C18 column (sized 250 x 4.6 mm, beads of 5 µm) 

and a preparative Vydac C18 column 218TP101522 (sized 250 x 22 mm, beads of 10 

µm). The eluting solvent A was 0.10% (v/v) trifluoroacetic acid in water, and solvent B 

was 0.08% (v/v) trifluoroacetic acid in acetonitrile. For the reaction mixtures that 

involved the nonapeptide, AcGKAMAAPRG, in a typical run the percentage of solvent B 

in the eluent was kept at 0% for 5 min after the injection of the sample, and then raised 

gradually to 15% over a 35-min period. For the cleavage of the decapeptide, 

AcAKYGGMAARA, the method was the same, but the content of solvent B at 35 min 

was 45%. The flow rate was 1.00 mL/min in analytical runs and 10.0 mL/min in 

preparative runs. The size-exclusion separations were done with a Superdex peptide HR 

10/30 column, having optimal separation range from 1000 to 7000 Da. The solvent was 

0.10% (v/v) trifluoroacetic acid in water, and the flow rate was 0.50 mL/min. 

Mass spectrometry. The MALDI-TOF experiments were done with a Bruker 

ProflexTM instrument. The samples were prepared by a standard dried-droplet procedure: 

1.0 µL of the solution of interest was mixed with 9.0 µL of a saturated solution of the 

matrix (α-cyano-4-hydroxycinnamic acid) in a 2:1 (v/v) mixture of water and 
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acetonitrile. Each spectrum consisted of 100 scans. For the sake of clarity, molecular 

masses are reported only for the fragments free of the Pt(en) groups, although the Pt(en)-

carrying fragments were also observed in the MALDI spectra. Bradykinin and 

cytochrome c were used as external standards. The measured molecular mass of a given 

fragment was compared with the value calculated by PAWS software, obtained from 

ProteoMetrics, LLC. An excellent agreement between the measurement and calculation 

conclusively identifies a peptide or relatively small protein. 

Ultraviolet and microwave irradiations. The photochemical reactions were 

done in a Rayonet 100 reactor, which had 16 fluorescent tubes designated 3000 Å for the 

experiments at 300 nm, and eight fluorescent tubes designated 3500 Å for the 

experiments at 350 nm. The lamps have a bandwidth of approximately 25 nm on each 

side of the nominal emission maximum.  

The experiments involving microwave irradiation were done with a CEM 

(Matthews, NC) Model Discover continuous-wave microwave oven delivering 300 W 

and allowing continuous cooling.35 

Study of hydrolysis. In a typical experiment with ultraviolet irradiation, 

involving equimolar amounts of the Pt(II) reagent and the methionine residue in the 

substrate, 0.35 mL of a 60 mM solution of the nonapeptide, AcGKAMAAPRG, was 

mixed with 0.21 mL of a 100 mM  stock solution of cis-[Pt(en)(H2O)2]2+ and 1.44 mL of 

water. The final concentration of the peptide was 10.5 mM. The pH was adjusted by 

HClO4 or NaOH. For a good comparison, the reaction mixture was divided in two 1.0-

mL halves. One half was transferred to a quartz cuvette sized 10 x 10 x 40 mm with all 

walls transparent that had a rubber septum; thoroughly purged of air by bubbling with 
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argon for 20 min; and irradiated by ultraviolet light for one day. The other half was kept 

in a 2.0-mL glass vial in the dark and heated in a dry bath (aluminum block). Samples of 

both halves were taken periodically; kept frozen, to quench the reaction; and analyzed by 

HPLC. After the reactions were completed, the pH remained within ±0.1 of the initial 

value. In the control experiments for possible background cleavage, the conditions were 

the same except that cis-[Pt(en)(H2O)2]2+ complex was absent and the reaction was 

followed for much longer periods of time. The irradiated reaction mixtures had pH values 

of 2.0 and 2.5, and were kept at 40 and 60°C. 

For the experiments involving microwave irradiation, the stock solutions were 

5.00 mM in each substrate (the nonapeptide, the decapeptide, or cytochrome c). In a 

typical experiment, involving equimolar amounts of the Pt(II) reagent and the methionine 

residue in the peptide, the final volume of the reaction mixture was 5.00 mL, and the final 

peptide concentration was 1.00 mM.  The reaction mixture contained 1.00 mL of the 

peptide solution, 50.0 µL of a 100 mM stock solution of cis-[Pt(en)(H2O)2]2+ complex, 

and 3.95 mL of water. For the experiments with cytochrome c, the ratio of the protein to 

the Pt(II) reagent was 1:5. The pH was adjusted with HClO4 or NaOH. The reaction 

mixture was divided in two parts; a 1.0-mL portion was kept in a dry bath, and a 4.0-mL 

portion was irradiated by microwaves. In the control experiments for possible 

background cleavage, the conditions were the same, except that cis-[Pt(en)(H2O)2]2+ 

complex was absent and the reaction was followed for much longer periods of time.  

The progress or absence of cleavage was monitored by size-exclusion 

chromatography in the case of the protein substrate and by reverse-phase HPLC in the 

case of the peptide substrates. In both cases the separated fragments were lyophilized to 
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dryness, re-dissolved, and identified by MALDI-TOF mass spectrometry. This 

identification method is faster and more reliable than the sequencing of terminal residues, 

used in our earlier studies.20 

Determination of the rate constants. Because the cleavage is very slow at the 

room temperature, at which HPLC was done, the species distribution in each 

chromatographic run matched that in the digest. The plots of the peak areas for the 

cleavage products versus time were fitted to the first-order rate law with the program 

SigmaPlot v. 5.0, obtained from SPSS Inc.  All the kinetic plots have 5% error bars, 

reflecting the estimated inaccuracy in injecting the samples and integrating the peaks. 

Because the binding of the Pt(II) reagent to the methionine side chain is much faster than 

the subsequent intramolecular cleavage of the substrate, the fitting to the first-order rate 

law is justified. Each rate constant is the average of two consistent values, obtained by 

monitoring both fragments, products of the cleavage. The stated errors in the rate 

constants correspond to two standard deviations, i.e., confidence limit greater than 

95.0%. These conservative error margins are our precaution against overstating small 

differences. 

In experiments with irradiation at 300 nm, in which the product peaks increased 

for approximately three hours and then started to decrease, only the increasing part of the 

plot was fitted. This part corresponded to 85-90% of the cleavage reaction.  

Results and discussion 

Design of the photochemical experiments. The interaction of the platinum(II) 

ion with the scissile amide group probably involves dissociation of an aqua ligand. 

Therefore the ability of ultraviolet light to enhance ligand-substitution reactions at 
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platinum(II) atom36,37 may be relevant to the action of cis-[Pt(en)(H2O)2]2+ complex in 

cleaving peptide bonds. We considered different irradiation wavelengths. The absorption 

spectrum of the complex shows a maximum at 256 nm, but we did not use the light of 

254 nm lest it cause displacement of the ethylenediamine ligand. At 300 nm, 

phenylalanine, tyrosine, and tryptophan would be excited, since they absorb light around 

280 nm. The presence of these residues might have caused side reactions that would have 

obscured the reaction of interest, the substrate cleavage by cis-[Pt(en)(H2O)2]2+ complex. 

For this reason, the methionine-containing nonapeptide, used in the experiments 

involving ultraviolet irradiation, lacked aromatic residues.  

 The cleavage of the nonapeptide by cis-[Pt(en)(H2O)2]2+ complex under 

ultraviolet irradiation. The equimolar mixture of the nonapeptide, AcGKAMAAPRG, 

and cis-[Pt(en)(H2O)2]2+ ions at pH 2.50 and 60 °C was irradiated at 300 nm and analyzed 

by HPLC. Initially, two peaks were present: that containing the intact nonapeptide, 

eluting at 26.2 min, and that containing free cis-[Pt(en)(H2O)2]2+ complex, eluting at 3.8 

min.  After four hours, two new peaks, eluting at 5.3 and 9.5 min, were the only ones 

present in the chromatogram. These two products of cleavage were identified by MALDI 

mass spectrometry. Very similar HPLC and MALDI results were obtained upon 

irradiation at 300 nm. Table 1 shows that cleavage by cis-[Pt(en)(H2O)2]2+ complex under 

ultraviolet irradiation occurs on the carboxy side of the methionine residue, that is, at the 

first amide bond “downstream” from the anchoring residue, as shown schematically 

below.  

                       AcGly-Lys-Gly-Met-Ala-Ala-Pro-Arg-Ala 
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The comparison of ultraviolet irradiation and thermal heating. Figure 1 

shows a typical kinetic plot for the cleavage assisted by ultraviolet irradiation. Table 2 

shows that the rate constants for the cleavage of the nonapeptide by cis-[Pt(en)(H2O)2]2+ 

complex were approximately two times higher under irradiation at 300 nm than under 

thermal heating, at all the pH values and temperatures examined. In other words, reaction 

time is approximately halved under irradiation at 300 nm. 

Solutions irradiated at 300 nm, however, turned from light yellow to yellow and 

then to brown, while the thermally heated solutions stayed light yellow. Upon prolonged 

irradiation, HPLC peaks for the products decreased without new peaks emerging. Brown 

precipitate separated upon the centrifugation of the irradiated solutions. These symptoms 

of side reaction persisted when irradiation at 300 nm was done at 40°C and at a lower pH.  

These symptoms were less pronounced under irradiation at 350 nm, but, as Table 2 

shows, the cleavage rate was only slightly higher than that under thermal heating. 

Although the photochemical method proved to be somewhat successful, we looked for 

other means of accelerating the cleavage reaction. 

Effects of microwave irradiation on the reaction rates. Reactions of palladium 

compounds in homogeneous catalysis are markedly promoted by microwaves.38,39 Very 

recently the microwave method began to be applied to platinum compounds,40-42 but it 

has barely been used with peptides and proteins. Hydrolysis of these polyamides is much 

accelerated,43,44 but the brutal acidic conditions used make the reaction nonselective and 

therefore good for protein sequencing but not for the production of discrete peptides in 

high yields. Selective cleavage at both carboxy-termini and amino-termini of aspartyl 

residues occurs in weakly acidic medium. The reaction time was three to six times shorter 
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under microwaves than under conventional heating, but only 90% of the other peptide 

bonds stayed intact under the reaction conditions.45 Microwave-enhanced cleavage by 

trypsin was recently used for protein mapping, but the reaction was incomplete.46 

Because the thioether group is a fairly strong nucleophile for platinum(II) ion, 

displacement of an aqua ligand in cis-[Pt(en)(H2O)2]2+ complex by the methionine side-

chain occurs within minutes in our experiments. Because the carbonyl oxygen atom is a 

weak nucleophile, the interaction between the methionine-anchored platinum(II) ion and 

the scissile amide group is slow. This step and the subsequent external attack of the 

solvent water at the activated amide group may, in principle, be accelerated by 

microwaves. We set out to test this hypothesis. 

 The cleavage of oligopeptides by cis-[Pt(en)(H2O)2]2+ complex under 

microwave irradiation. Because microwave irradiation shortens reaction times and thus 

disfavors secondary reactions, we did the experiments at 100 as well as 60°C. To 

maximize the microwave energy imparted to the sample, we carried out experiments with 

continuous cooling. We continued to use the nonapeptide, AcGKAMAAPRG, so that we 

could compare various methods for  promoting the cleavage. Since the microwave 

irradiation should not affect the aromatic residues, we also used the decapeptide, 

AcAKYGGMAARA.  These two substrates gave consistent results. For example, an 

equimolar mixture of the nonapeptide and the Pt(II) reagent irradiated for 3 h at pH 2.5 

and 60°C showed only two HPLC peaks, eluting at 5.3 and 9.5 min. Evidently, the 

cleavage was complete. As before, both fragments were identified by MALDI mass 

spectrometry. As Table 1, Table S1 in the Supporting Information, and the illustration 
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below show, the selectivity under microwave irradiation is the same as that under 

ultraviolet light and conventional heating.  

          AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala 

Nearly perfect match of measured and calculated molecular masses in Table 1 is 

evidence that the fragments retain their terminal amino and carboxylic groups. Even a 

slight chemical modification of the fragments would have affected their molecular 

masses, and MALDI-TOF spectra would have shown it. Evidently, the platinum(II) 

reagent cleaves the substrate by hydrolytic mechanism, as shown in Scheme 1.  

Figure 2 shows that the half-life for cleavage of the nonapeptide is reduced to ca. 

40 min at 60ºC. Table 3 shows that microwaves are generally two to three times more 

effective than thermal heating at 60°C in promoting cleavage by the Pt(II) reagent and six 

to seven times more effective at 100ºC. At this higher temperature the half-life for 

cleavage is only 3.5 min for the decapeptide and only 1.2 min for the nonapeptide. No 

side reactions were observed.  

Encouraged by these results, we applied the new method to a protein. 

The microwave-promoted cleavage of Equine cytochrome c by cis-

[Pt(en)(H2O)2]2+ complex. Because the protein contains multiple residues capable of 

binding the reagent, we added five equivalents of the platinum(II) complex. The reaction 

at pH 2.5 and 60 °C was followed by size exclusion chromatography. Intact cytochrome c 

eluted at 16.5 min. After 12 h the intact protein was absent, and three fragments were 

identified by MALDI mass spectrometry. Table S2, in the Supporting Information, gives 

evidence for selective cleavage of Met65-Glu66 and Met80-Ile81 bonds, as shown 

schematically below.  
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S S

 heme 

 

     1 AcGDVEKGKKIFVQKCAQCHTVEKGGKHKTGP 30 

  31 NLHGLFGRKTGQAPGFTYTDANKNKGITWK  60  

  61 E E T L M E Y L E N P K K Y I P G T K M I F A G I K K K T E   90  

  91 REDLIAYLKKATNE          1 0 4  

 

The growth of the peak corresponding to the fragment 81⋅⋅⋅104 at pH 2.5 and  

60°C obeyed the first-order rate law under both thermal heating and microwave 

irradiation; see Figure 3. The respective rate constants were (1.4 ± 0.4) x 10-3 and (3.5 ± 

0.5) x 10-3 min-1. Microwave irradiation approximately doubled the cleavage rate, as in 

the experiments with oligopeptides. Because the cleavage time with our reagent was 

comparable to that with common proteolytic enzymes, we deemed the reaction 

sufficiently fast for practical work and did not do experiments at 100°C. 

Conclusions and prospects 

This study confirms that the complex cis-[Pt(en)(H2O)2]2+ promotes selective, 

hydrolytic cleavage of peptide bonds involving the carboxylic group of methionine 

residue, i.e., the Met-Z bonds where Z has a noncoordinating side chain.24,25 Irradiation at 

300 nm increases the rate constant approximately two times, but this method is 

impractical because of side reactions. Microwave irradiation, however, increase the rate 

constant as much as seven times under conditions where side reactions are not observed. 

Two peptides and a protein were cleaved selectively and completely in a relatively short 

time. Because methionine residues are relatively rare in proteins, the products of cleavage 
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are relatively long peptides, suitable for proteomics, semisynthesis, and other 

applications. Because cleavage of even large proteins gives relatively few peptides, our 

reagent may be useful in analyzing mixtures containing relatively many proteins. Even 

incomplete cleavage, achieved in yet shorter time, may be useful in proteomics 

applications.  
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Table 1. Results of HPLC separation and MALDI mass spectroscopic identification of 

the fragments of  AcGly-Lys-Ala-Met-Ala-Ala-Pro-Arg-Gly  resulting from the cleavage 

by cis-[Pt(en)(H2O)2]2+ complex under ultraviolet irradiation 

 

molecular mass (D) elution 

time (min) observed calculated 
fragment 

5.3 448.66 448.56 1···4 

9.5 472.94 471.54  5···9 
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Table 2. Rate constants k for the cleavage of AcGly-Lys-Ala-Met-Ala-Ala-Pro-Arg-Gly 

by cis-[Pt(en)(H2O)2]2+ complex under thermal heating and under ultraviolet irradiation at 

the wavelengths shown 

 

k/10-3 min-1  

pH 

 

T (°C) thermal heating 300 nm 350 nm 

40 7±2 10±3 9±2  

2.0 60  17±4 32±5 n.d.a 

40  5±1 11±2 4±1  

2.5 60  13±2 20±4 n.d.a 

 

a Not determined. 
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 Table 3. Rate constants k for the cleavage of  the nonapeptide AcGly-Lys-Ala-Met-Ala-

Ala-Pro-Arg-Gly and the decapeptide AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala by 

cis-[Pt(en)(H2O)2]2+ complex at pH 2.5 under thermal heating and microwave irradiation 

 

k/10 -3 min-1 

nonapeptide decapeptide 

 

T(°C) 

thermal  microwave thermal  microwave 

60 6±1 17±3 2.5 ±0.5 7±1 

100 80±11 580±35 33±3 200±25 
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Scheme 1. Proteolytic selectivity of cis-[Pt(en)(H2O)2]2+ complex and the four steps of 

cleavage of amide bonds by Pt(II) complexes: (1) binding of Pt(II) atom to the sulfur in 

the methionine side chain; (2) interaction of the Pt(II) atom with the neighboring amide 

group; (3) attack of the solvent water; and (4) hydrolysis of the amide group. The 

unspecified ligand on the Pt(II) atom is H2O. Amino-acid residues X, Y, and Z have 

noncoordinating side chains. 
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Figure 1. Kinetics of the cleavage of the nonapeptide AcGly-Lys-Ala-Met-Ala-Ala-Pro-

Arg-Gly by cis-[Pt(en)(H2O)2]2+ complex under irradiation at 300 nm at pH 2.5 and 

60°C. The appearance of the fragment 5···9 was followed by HPLC.



www.manaraa.com

 

 

 
46 

time (min)

0 50 100 150 200 250 300

pe
ak

 a
re

a 
(m

A
U

)

0

2000

4000

6000

8000

10000

12000

14000

16000



www.manaraa.com

 

 

 
47 

Figure 2. Kinetics of the cleavage of the nonapeptide AcGly-Lys-Ala-Met-Ala-Ala-Pro-

Arg-Gly by cis-[Pt(en)(H2O)2]2+ complex under microwave irradiation, at pH 2.5 and 

60°C. The appearance of the fragment 1···4 was followed by HPLC.  
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Figure 3. Kinetics of the cleavage of equine cytochrome c by cis-[Pt(en)(H2O)2]2+ 

complex under microwave irradiation at pH 2.5 and 60°C. The appearance of the 

fragment 81···104 was followed by HPLC. 
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Supporting information  

Table S1. Results of HPLC separation and MALDI mass spectroscopic identification of 

fragments of AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala (decapeptide) resulting 

from the cleavage by cis-[Pt(en)(H2O)2]2+ at pH 2.5 and 60°C under  

microwave irradiation. 

 

 

 molecular mass (D) elution 
time (min) observed calculated 

fragment 

5.2 388.68 388.22   7···10  

15.2 669.42 668.79 1···6 
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Table S2. Results of size-exclusion HPLC separation and MALDI mass spectroscopic 

identification of the fragments obtained from the cleavage of equine cytochrome c by 5 

equiv of cis-[Pt(en)(H2O)2]2+ at pH 2.5 and 60°C under microwave irradiation. 

 

molecular mass (D) elution time 
(min) observed calculated 

fragment 

18.5 7804.3 7802.6   1⋅⋅⋅65 

23.8  2781.49  2780.3       81⋅⋅⋅104 

28.4 1813.2 1811.1    66⋅⋅⋅80  
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Figure S1. MALDI mass spectrum of the fragment 1···4 obtained in the cleavage of 

AcGly-Lys-Ala-Met-Ala-Ala-Pro-Arg-Gly (termed nonapeptide) by cis-[Pt(en)(H2O)2]2+ 

under irradiation at 300 nm. The peak at m/z =448.6 corresponds to the fragment 1···4, 

and the peak at 703.07 to the fragment 1···4 that carries a Pten group. The calculated 

molecular masses for the aforementioned species are 448.56 and 703.64. All the other 

peaks correspond to the matrix (α-cyano-4-hydroxycinnamic acid). 
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Figure S2. MALDI mass spectrum of the fragment 5···9 obtained in the cleavage of 

AcGly-Lys-Ala-Met-Ala-Ala-Pro-Arg-Gly (termed nonapeptide) by cis-[Pt(en)(H2O)2]2+ 

under microwave irradiation. The peak at m/z = 471.79 corresponds to the fragment 5···9, 

and the calculated molecular masses of the fragment is 471.54. All the other peaks 

correspond to the matrix (α-cyano-4-hydroxycinnamic acid). 
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Figure S3. Kinetics of the cleavage of AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala 

(termed decapeptide) by cis-[Pt(en)(H2O)2]2+ under irradiation at 300 nm, at pH 2.5 and 

60°C. The HPLC signal for the fragment 7···10 grows in time  
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Chapter IV. Pt(II) complexes as selective protein cleavers. General 

summary and future directions 

 Pt(II) complexes can cleave selectively and efficiently Met-Z bonds in peptides 

and proteins in weakly acidic solution, at temperatures between 40 and 60oC, even in the 

presence of sodium dodecyl sulfate.1-5 The same selectivity is observed when the reaction 

is performed under irradiation with ultraviolet or visible light, or microwave.4  

Although Pt(II) and Pd(II) ions are chemically similar, their complexes cleave 

peptides with different hydrolytic selectivity.2, 3 Pd(II) complexes cleave the second 

peptide bond upstream from the anchoring side-chain, histidine or methionine, the X-Y 

bond in the sequence X-Y-His(Met)-Z. This difference is explained by contrasting the 

modes in which each reagent binds to a specific side chain or to a side chain and the 

peptide backbone, and by their intrinsic reactivity. Pt(II) complexes selectively cleave the 

first amide bond downstream from methionine and are more suitable for producing longer 

peptide fragments, since the average abundance of methionine in proteins is about 2.2%. 

The combined abundance of methionine and histidine is about 5.5% , and obviously 

cleavage by Pd(II) would give rise to shorter fragments.  

Hydrolytic cleavage of proteins by cis-[Pt(en)(H2O)2]2+ (en is ethylendiamine) is 

accelerated under microwave irradiation. The reaction times were two to three times 

shorter under microwave irradiation, at 60oC and ca. seven times faster at 100oC, and no 

side reactions were detected for the peptides and the protein studied.4 

 The study of Pt(II) complexes as protein cleavage reagents is still seminal. It was 

shown that complexes containing ethylenediamine or 1,3-bis(methylthio)propane have 
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the same selectivity, although cleavage is faster when ethylenediamine is present.1-3,5 

Nevertheless, there are still many unexplored direction. For example, until now, no 

studies were undertaken on the cleavage of peptides and proteins that contain cysteine 

residues, so more work is required, since cysteines are ubiquitous in peptides and 

proteins. One can envision that cleavage will take place at cysteine, but if it does not 

happen, there are reagents available to modify the sulfhydryl group, and overcome any 

interference from it.  

There are numerous applications that one can envision for cis-[Pt(en)(H2O)2]2+ as 

a cleavage reagent: generating large protein fragments that can be used in protein 

semysinthesis, as a reagent in peptide mapping by mass spectrometry, or other 

applications that require identification of fragments by mass spectrometry, for removal of 

expression tags, or to obtain structural information about proteins. The capacity of cis-

[Pt(en)(H2O)2]2+ to cleave even in the presence of detergents like sodium dodecyl sulfate 

could make it a useful tool in the study of insoluble membrane peptide and proteins. The 

wide array of applications that seem suitable for cis-[Pt(en)(H2O)2]2+ make it a promising 

reagent for the study of biological systems.  
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Chapter V. RNA-protein interactions in the 30S ribosomal subunit 

Introduction 

Probing RNA structures with different chemical reagents is a powerful tool in the 

study of RNA-protein interactions. One of the systems for which probing with different 

chemical reagents was applied is the small (30S) subunit of the ribosome. In this chapter, 

the 30S subunit and some approaches for its study involving chemical reagents, as base-

specific footprinting and hydroxyl directed probing, are presented.  

RNA-protein interactions play very important roles in many central cellular 

functions, such as replication, transcription and translation. RNA and proteins bind to 

form ribonucleoprotein particles (RNPs) such as the ribosome or spliceosome. The 

assembly of complex RNPs involves ordered binding of multiple proteins and is an 

intricate process. In these RNPs, RNA is often a ribozyme, or essential for catalysis.1-4 

Many RNPs, like the ribosome, contain large RNA molecules which can adopt numerous 

conformations. Generally, proteins help the RNA adopt the conformation necessary to 

form a functional RNP, and they are sometime referred to as “RNA glue”.5 Thus, while 

not necessarily catalytic, proteins are essential for active site organization. 

Often, binding of protein to RNA involves major conformational changes in one 

or both the RNA and protein. Dynamically disordered parts of either one of the binding 

partners can adopt a defined conformation in the complex. The binding process that 

involves conformational changes in one or both of the partners is termed induced fit.6,7 

An important goal of structural biology is to understand the mechanistic and energetic 

consequences of the induced fit mechanism that is so ubiquitous. These conformational 
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changes are thought to be important for affinity and specificity in RNA-protein 

interactions, and sometime for the function of the intact complex. For a better 

understanding of such conformational changes it is necessary to study RNA-protein 

interactions, by different approaches, in well characterized model systems. The small 

subunit of the prokaryotic ribosome is such a suitable model system.  

30S ribosomal subunit - a model system for the study of RNA-protein 

interactions  

The prokaryotic ribosome. The ribosome translates the message encoded in the 

nucleotide sequence of the messenger RNA into the amino acid sequence of a protein. It 

provides the structural framework for the decoding process and contains the catalytic 

center responsible for the formation of peptide bond. Ribosomes from different types of 

cells have the same basic structure but vary in size. All prokaryotic ribosomes (70S) are 

composed from two asymmetric RNPs, a large 50S subunit and a small 30S subunit.  The 

nomenclature of the subunits of the ribosome derives from the experiments in which 

ribosomes were isolated from cell lysates by utracentrifugation.8 The RNPs were named 

according to their sedimentation characteristics during centrifugation, which are 

determined by the molecular size and geometrical shape of the complex.8 Svedberg units 

(S), the units of measurement used for ultracentrifugation, are not additive. The Svedberg 

values of the two ribosomal subunits do not add up to that of the entire ribosome, due to 

the loss of surface area when the two subunits are bound. The size of the prokaryotic 

ribosome is 2-2.5 nm and its approximate mass is 2.6-2.8 kDa.9 The crystal structure of 

the ribosome from different prokaryotic organisms has been determined.10-13 The 
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ribosome is a very complex and massive macromolecular machine and often, for a better 

understanding of the RNA-protein interactions that take place, its subunits are studied 

separately. The small 30S subunit, our model system for the study of RNA-protein 

interactions and assembly of RNPs, binds messenger RNA, initiation factors, the large 

subunit 50S and participates in transfer RNA selection, during translation.  

 30S subunit - structure and composition. The 16S ribosomal RNA (rRNA) and 

21 ribosomal proteins (r-proteins) (S1-S21) interact to form the 30S subunit. The proteins 

have the letter “S” in their name to indicate that they are components of the small 

subunit. The 30S subunit has a molecular weight of approximately 0.85 kDa and one-

third of the mass consists of r-proteins, while the remaining mass the rRNA.9 The crystal 

structure of  the ribosome from E. coli (Figure 1) was determined recently.13  

16S rRNA. The primary sequence of 16S rRNA from E. coli was determined in 

the late seventies,14 and the secondary structure was elucidated by phylogenetic 

comparison and footprinting studies.15 The sequence of 16S rRNA is highly conserved 

among all organisms.16 16S rRNA is composed from four domains which assemble with 

the corresponding r-proteins into different parts of the 30S subunit (Figure 2a). The four 

domains and their corresponding parts of the 30S subunit are: 5’ domain of 16S rRNA 

which forms the body of the 30S subunit, the central domain which folds in the platform, 

the 3’ major domain that forms the head and the 3’ minor domain which mainly forms the 

penultimate stem13, 15 (see Figure 2a and b). Each of the aforementioned domains of 16S 

rRNA can assemble independently of the others, in the presence of the correct r-

proteins.17, 18 
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 Small subunit r-proteins.  The E. coli r-proteins are small in size up to 250 

amino acids, with the exception of S1 which has about 550 amino acids. In general, r-

proteins are very basic, with an average pI of 10, which is not surprising since they 

interact with RNA which is a negatively charged molecule.19, 20 From a structural point of 

view, they typically have one or more globular domain(s) and they often contain 

extended internal loops or long N- or C-terminal extensions.19 Usually the loops and the 

extensions are very rich in basic amino acids such as arginine and lysine and they are 

closely associated with the rRNA.13, 19 The r-proteins are predisposed to interact with 

rRNA through salt-bridges, through the positively charged residues, which suggests that 

shape and complementarity rather than sequence–specific interactions define the rRNA-r-

protein interactions.   

 The small subunit r-proteins are classified from assembly point of view in three 

classes: primary (S4, S7, S8, S15, S17 and S20), secondary (S5, S6, S9, S11, S12, S13, 

S16, S18 and S19) and tertiary (S2, S3, S10, S14 and S21) (Figure 2c). Primary binding 

proteins bind directly and independently to16S rRNA, secondary binding proteins require 

the prior binding of at least one primary protein and tertiary binding proteins involve the 

initial assembly of at least one primary and one secondary binder. More details on the 

assembly of the 30S subunits and the classification of small subunit r-proteins are given 

in a later section. The primary binding r-proteins are prominently used in our studies and 

they are presented in more detail below.  

Ribosomal proteins S4, S7, S8, S15, S17 and S20 

There are six r-proteins which interact independently and directly with 16S 

rRNA.21 Each of these r-proteins is thought to be important for direct rRNA 
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conformational rearrangements and they enable other r-proteins to assemble in latter 

assembly events. Three of them (S4, S17 and S20) bind the 5’ domain and help in the 

organization of the body of the 30S subunit.13,19,22,23 The remaining r-proteins S8 and S15 

bind to the central domain to organize the platform, while S7 binds to the 3’ major 

domain to form the head of the small ribosomal subunit.13,19,24 The 3’ minor domain 

forms the penultimate stem and helix 45, and has only one primary binding r-protein that 

interacts with it, S20, which binds also to the 5’ domain13, 19, 22 (Figure 2 and Figure 3). 

While all primary r-proteins are likely important for the assembly cascade, S4 and S7 are 

considered the initiators for the assembly of the 30S subunit.25 

One of the few r-proteins that interacts with two different domains of 16S rRNA 

is S20, as it was shown by footprinting22 and the crystal structure of the 30S subunit. 

Initially there was some discrepancy in the placement of S20. Neutron diffraction 

mapping placed it in the head of the 30S subunit,26 while immunoelectron microscopy 

and footprinting studies located it at the bottom of the body.22 Directed hydroxyl radical 

probing also positioned it at the bottom of the 30S subunit.27 Crystal structure of the 30S 

subunit showed that S20 is a three-helix bundle located at the bottom of the 30S subunit, 

and it binds several helices from the 5’ domain (body) and the 3’ minor domain 

(penultimate stem).13, 19  Its structure has not been determined in the free form, when not 

bound to the 16S rRNA. Based on the model of 5’ to 3’ assembly28 and the positioning of 

helix 44 across the body in the small subunit,13 it is easy to speculate that S20 may 

interact with these domains differently along the assembly path. 

The r-protein S17 binds both the 5’ domain and the central domain, as it was 

observed in the crystal structure.13, 19 Its location is at the interface formed between the 
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top right of the body as viewed from the interface side that includes helices 7 and 11, and 

the three-way junction H20/H21/H22 of the platform (Figure 2). The structure 

determined in isolation by NMR showed that the core of Bacillus stearothermophilus (B. 

st.) S17 consists of a β-barrel with the oligonucleotide/oligosaccharide-binding fold, a 

motif common for a few classes of RNA binding proteins.29 Beside the β-barrel, long 

disordered loops were also observed in the free form. For both organisms, E.coli and B. 

st., the core of S17 is involved in extensive contacts with H7 and H11 in the 5’ domain, 

in the 30S subunit and stabilizes the sharp bend at the H7-H11 junction. The chemical 

footprints observed for S17 are present mainly in helix 11 of the 5’ domain,22 and no 

footprints were observed in the central domain. It is possible that in the minimal complex 

S17/16S rRNA the central domain is not well organized, thus the central domain 

footprints are not observed. Majority of the residues from E. coli S17 that contact the 

central domain are in the loop 25-40,13,19 which is presumably quite dynamic while the 

central domain is not assembled, as in the crystal structure of S17 in isolation.29 The 

complex is probably not stable enough to be seen via footprinting or the interaction with 

the central domain may occur latter in the assembly.  

S4 nucleates assembly of the 5’domain and it is the main protein stabilizing the 

back of the shoulder of the 30S subunit.13,19,23 The r-protein S4 binds the five-way 

junction formed by H3, H4, H16, H17 and H18 (Figure 2a and b, and Figure 3). The 

structure of S4 in isolation without the first 41 amino acid residues was determined by 

both crystallography30  and NMR31, and both structures are very similar to the 

corresponding fragment of the r-protein in the 30S subunit.13,19 But, since a significant 
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part of S4 is missing, it is not known how that piece behaves at binding to 16S rRNA. 

More details on the interaction of S4 with 16S rRNA are presented in a later section. 

The r-protein S15 binds the three-way junction between H20, H21 and H2213, 19 

(Figure2a and b, Figure 3). The protein has a simple four-helix bundle structure similar to 

S20, and its structure was determined in isolation by both NMR and X-ray 

crystallography for different organisms.32 The structures of S15 in free form, bound to a 

fragment of RNA, as part of the low-resolution structure of the central domain of 30S 

subunit, and in complex with an RNA fragment, S6, and S18, are quite similar to the one 

of the r-protein in the 30S subunit.13, 19, 33 The footprints specific for S15 are localized in 

helices 22 and 2324 and they are very consistent with the S15 binding site. Thus, S15 

interactions are restricted to the central domain of 16S rRNA. 

S8 is located near the center of the back of the body in the structure of the 30S 

subunit and it may play a critical role in orienting the platform (central domain) relative 

to the body (5’ domain) of the 30S subunit (Figure 3). S8 binds near the H20/H21/H22 

three-way junction making extensive interactions with H21 and H25.13 Hydroxyl radical 

footprinting and probing data are in good agreement with the crystal structure of the 

small ribosomal subunit. The N-terminus of the r-protein packs against the helix H25, 

thus helping the folding of the central domain.13 The crystal structure of S8 from B.st and 

Thermus thermophilus (T. thermophilus) was also determined in isolation and it is very 

similar to the one from the 30 S subunit of T. thermophilus.19  

The footprints specific for S8 are present throughout the central domain and in the 

5’ domain.24 More precisely S8 footprints in the 530 loop, 570 region, helices 20, 21 and 
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23, and also the 820 and 860 regions.24 Obviously, S8 organizes more extended regions, 

not only the S8-16S rRNA direct surface contact.  

S7 nucleates the assembly of the head, by binding to two multiple-stem junctions 

H28/H29/H43 and H29/H30/H41/H42 from the 3’ domain (Figure 2a and Figure 3). The 

structure of S7 from B. st. and T. thermophilus was determined in isolation by 

crystallography, and a triangular-shaped helical domain with a highly conserved β-

hairpin extension was observed. In the 30S subunit the very basic N-terminus of S7 was 

disordered in isolation but adopts a clear conformation when bound to the rRNA.13 In the 

E. coli S7 (in the K strains) 20 additional residues are present in the C-terminus. The 

structure of S7 from T. thermophilus in isolation is almost identical with the one in the 

30S subunit, except the orientation of the β-hairpin. The orientation of the hairpin with 

respect to the helical domain is different in the structure of the small subunit from either 

of the isolated structures.  

Binding of S7 affects the reactivity of an extensive region in the lower half of the 

3′ major domain.34 The number of footprints specific for S7 is quite high and they are 

caused by a combination of direct RNA-protein contacts and S7 induced packing of 

minor groves.13,19,34 Many of the footprints are present in regions where there are direct 

S7-16S rRNA contacts (the two multiple stem junctions mentioned above), but there are 

some in areas situated at some distance from the binding interface (region 980, and loops 

1330 and 1360).13,34  

 The structure of some of the primary r-proteins (S4, S7, S8, S15 and S17) in free 

form was also resolved by NMR, X-ray crystallography, or both. Identifying changes that 

occur during the assembly of 30S subunit, in the rRNA and the r-proteins is the next 
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challenge in understanding the assembly of the small subunit of the ribosome. The crystal 

structures revealed the structure of the final product of the assembly, or of the separate 

components, without clarifying how the ribosome assembles from its components. Other 

approaches have to be used to decipher the principles of RNP assembly and how RNA-

protein interactions help in this process. The structure of the final product will help in the 

interpretation of the results obtained by other approaches.  

 Assembly of the 30S subunit.  One of the characteristics that make 30S subunit 

such an attractive model system for studies of RNA-protein interactions is the fact that it 

assembles in vitro from its components.21 Furthermore, it reconstitutes not only when 

using a mixture of r-proteins extracted from natural 30S subunits,21 but also when 

individually purified proteins are used.35 Functional 30S subunits were also reconstituted 

using recombinant proteins.36,37 Each of the ribosomal proteins (S2-S21) was cloned, 

overexpressed, purified and assembled with natural 16S rRNA to form functional 30S 

subunits.36,37 Extensive biochemical and genetic manipulation can be performed with this 

system to understand the functional role of any particular r-protein of interest and the 

nature of protein-RNA interactions that constitute the 30S subunit. The recombinant 

system makes possible some of the experiments that will be presented in this thesis.  

The in vitro reconstitution system made possible the determination of the 30S 

subunit assembly map38, 39 (Figure 2c) which depicts the protein dependencies for binding 

16S rRNA during assembly. Assembly of the 16S rRNA into its functional conformation 

from 30S subunit is orchestrated by sequential binding of r-proteins. The r-proteins have 

been categorized into the three assembly classes (primary, secondary and tertiary)35,38,39 

mentioned earlier, as it is shown in the assembly map (Figure 2c).  
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The assembly of the 30S subunit in vitro is highly temperature dependent. 

Reconstitution experiments performed at different temperatures revealed two 

intermediates with virtually the same composition but different sedimentation 

coefficients, RI (Reconstitution Intermediate)  and RI*. RI is formed at low temperature 

(0-15oC) and the activated intermediate RI* is obtained from RI by heat activation.40-42 A 

large conformational change is responsible for the conversion of RI into RI*. The r-

proteins present in the two assembly intermediates are a subset of the primary and 

secondary r-proteins.40-42 After activation, the remaining r-proteins are able to bind to the 

RI* and form functional 30S subunits. In vivo, the strains that have 30S subunit assembly 

defects are cold-sensitive and from these defective strains assembly intermediates similar 

to those observed in vitro were also isolated.40,43,44 These observations suggest that the 

intermediates observed in vitro are true representatives of the assembly pathway and not 

merely experimental artifacts. 

RNA-protein interactions in the 30S subunit 

30S ribosomal subunit has 22 components which interact in an ordered fashion to 

form the macromolecular complex. The complexity and size of this system makes its 

study quite complicated. The crystal structure of the ribosome and of the separate units 

gave us a clear picture of the final product but it does not reveal how all these 

components come together to form the RNPs. Other methods that analyze RNA- protein 

interactions play an important role in the elucidation of the mechanism of assembly of the 

30S subunit.  

An intricate network of intramolecular and intermolecular interactions is involved 

in the process of 30S subunit self-assembly. There are obviously three different classes of 
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interactions present in the small subunit: RNA-RNA, RNA-protein and protein-protein 

interactions. Since in our studies we are exploring mainly RNA-protein interactions 

methods suitable for their investigation are presented. Often these methods are used with 

the adequate adaptation, for the study of other types of interactions. The main 

biochemical approaches used in the identification of the interaction sites of r-proteins 

with 16S rRNA and to understand the effects of the RNA-protein interaction on the 

structure of the 16S rRNA are footprinting, cross-linking and binding assays. The first 

question that needs to be answered, especially when studying a large RNA molecule like 

16S rRNA is to what part of the rRNA is the r-protein binding. All three of the 

aforementioned methods can give an answer to this question. Cross-linking gives 

information describing contacts between different rRNA regions (intra-RNA cross-

linking) and contacts between16S rRNA and individual ribosomal protein (RNA-protein 

cross-linking). Since cross-linking requires connection of two or more partners through 

covalent bonds, the region(s) of 16S rRNA to which r-proteins bind can be determined. 

Reagents like bis(2-chloroethyl)methylamine45-47 and 1-ethyl-3-(3-

diethylaminopropyl)carbodiimide48-50 were used to study the interaction of r-proteins 

with 16S rRNA. 

Binding studies using methods such as filter binding assay,51-54 gel mobility shift 

assay,55 and sucrose gradient assay56 give information on the strength of the RNA-protein 

interaction and reveal minimal binding sites. Footprinting with a few different types of 

probes can also reveal the binding interface.57,58 Establishing the binding site and the 

strength of the interaction is the first step in the study of RNA-protein interaction. 

Another important question is what happens to the binding partners during the 
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interaction. Is their conformation changing after binding, if there is a change is it 

localized to the contact surface or it does propagates at some distance? Cross-linking and 

binding studies can give some answers to these questions, but footprinting is probably the 

most powerful biochemical method to study conformational changes that take place in 

RNA. Footprinting combined with primer extension make possible the examination of the 

rearrangements that take place in 16S rRNA during interaction with r-proteins, by 

determining the changes in reactivity of almost each nucleotide.57,58 The variations in 

reactivity are attributed to differences in the accessibility of nucleotides in the probed 

molecule, from which conformational changes can be determined.57,58 Base specific 

probes modify nucleotides, and they are used to identify the nucleotides that undergo 

changes at the binding of r-proteins. Hydroxyl radicals cleave the RNA backbone, and 

reveal regions of 16S rRNA that become protected at the binding of r-proteins. A 

combination of the two types of probes identifies nucleotides which are involved directly 

or indirectly in binding. Besides giving information on the alteration in reactivity around 

the binding site, footprinting will reveal long distance conformational changes that take 

place as a result of the interaction.57,58 

Site-directed hydroxyl radical probing of RNA by using Fe(II) tethered to unique 

positions on individual proteins is a different approach used to gain information about the 

three-dimensional rRNA environment around the tethered Fe(II) probe.59 Primer 

extension is used to map the changes in reactivity and the cleavage sites. Since 

footprinting and primer extension are used in our studies, a more detailed description is 

presented in one of the next sections. 
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Probing of RNA conformation is one of the examples where chemical reagents 

are preferred over enzymes. In the 1960s and 1970s enzymatic digestion was used to 

study the interaction between 16S rRNA and r-proteins. Enzymatic digestion takes 

advantage of the fact that the susceptibility of RNA to digestion depends on its 

conformation, or use nucleases that prefer single-stranded RNA to double-helical RNA. 

Nevertheless, chemical reagents became the favorite probes for the study of 

conformational changes in RNA over enzymes, and size was the main advantage that 

they had. Enzymes are much larger than the structural details they were used to study, 

and scientists were concerned that reactivities might depend on more than just the local 

conformation. Beside that, there was not enough information on the selectivity of these 

enzymes, regarding RNA structures other than the A-form.60 

Dynamics of the r-protein 16S rRNA interaction 

 Co-transcriptional assembly. Kinetic footprinting studies revealed the sequential 

and cooperative nature of assembly.28 The differential change in the reactivity of 

nucleotides during assembly at different temperature was monitored. This study made 

possible a different classification of r-proteins into different kinetic groups based on the 

temperature and thus the order in which the r-proteins bind to the growing RNP. In the 

earlier footprinting studies the footprints specific for a certain protein were identified, and 

the change in reactivity of nucleotides was attributed to binding of specific proteins. The 

r-proteins were classified in early binders (S4, S6, S11, S15, S16, S17, S18, S20), mid 

binders (S7, S8, S9, S13, S19), mid-late (S5 and S12) and late binders (S2, S3, S10, S14, 

S21) based on the changes in their footprints during assembly.28 Even though each 

protein belongs to one kinetic class, the footprints attributed to it can belong to different 
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kinetic classes. R-proteins that bind to the 5’ and central domains fall into the early 

binding class and proteins that bind to the 3’ major domain fall into the mid and late 

assembly groups. These results suggest that the 5’ and central domains start assembling 

prior to the 3’ domain. Three of the six proteins that interact with the 5’ domain are 

primary binders and there are no tertiary binding proteins in this region (Figure 2c). At 

the other end is the 3’ major domain where S7, a mid binder, is the only primary protein 

present, that nucleates folding and five of the eight proteins that bind to this domain are 

tertiary proteins (Figure 2c). Since the r-proteins that bind to the 5’ domain bind the 

fastest and with high affinity, it seems plausible that the 5’ region might be the first to 

fold as soon as transcribed and that 3’ major domain assembles last.28  

 Conformational changes in 16S rRNA during assembly. A detailed investigation 

of the changes in the conformation of 16S rRNA during the assembly was performed, by 

chemical modification and primer extension analysis of each assembly intermediate.61,62 

The 16S rRNA undergoes major conformational changes induced by the binding of r-

proteins to form RI, while rearrangements induced by concerted action of temperature 

and r-proteins take place in the heat activation step from RI to RI*. In the last step which 

is not temperature dependent, binding of the remaining r-proteins will produce a 

functional 30S subunit. During the early stages of assembly majority of the changes are 

present in the 5’ domain while as assembly proceeds, the area where the changes are 

observed shifts towards the 3’ end of 16S rRNA.  These observations, similarly to the 

ones from the kinetic footprinting studies confirm a polar nature of the assembly, which 

might be reflective of co-transcriptional assembly in vivo. The roles of r-proteins at 
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different stages of assembly were also dissected and the most important proteins for each 

step were proposed.61,62 

 Assembly landscape. Another approach used kinetics of binding of r-proteins to 

follow the assembly of 20 r-proteins with 16S rRNA to form the 30S subunit by pulse–

chase quantitative mass spectrometry.63 The protein binding rates to 16S rRNA or 16S 

rRNA containing RNPs at a range of temperatures were determined. A very complex 

assembly process in which different pathways are available that converge in the final 

point, formation of a functional 30S subunit, was revealed. An assembly landscape for 

the formation of the functional subunit was determined and based on it, the binding of 

each r-protein further stabilizes the native 30S conformation, until all assembly pathways 

converge at this state.63  

 The aforementioned studies of the dynamics of the rRNA-r-protein interactions 

during assembly analyzed the global changes of the 16S rRNA in the presence of all or 

many r-proteins. The interaction between the 16S rRNA and each of the individual r-

proteins and the importance of each r-protein in the assembly process was not dissected. 

When all the r-proteins are present the concerted changes in the conformation of the 16S 

rRNA might obscure the contribution of each protein. Other studies, like the ones that we 

will present in this thesis can reveal more on the role of the r-proteins in the assembly of 

the 30S subunit.  

 A temperature-dependent conformational rearrangement in the S4/16S rRNA 

complex. In the eighties two binding sites for S4 were determined by different 

methods.23,53,64  Chemical footprinting by the Noller lab, showed that a number of bases 

in the 5’ domain were protected by bound S4, bases confined mainly to the 
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H4/H16/H17/H18 helical junction,23 which was termed the ”S4 junction”. This result was 

also supported by direct RNA-protein cross-linking64 to one of the helices and the earlier 

observations of nuclease protection studies. The Draper lab studied the interaction of 16S 

rRNA with S4 by determining the binding constants with different synthetic 

subfragments of 16S rRNA.53 Omission of regions of the rRNA containing two of the 

five implicated helical elements did not influence the specific binding of S4 to the RNA, 

indicating a smaller binding site for S4 then the one determined by footprinting.53, 65 One 

difference between the footprinting and the binding experiments was that they were 

performed at different temperatures, at 42oC23 and 0oC respectively.53, 65 Later, the 

footprints for the interaction of 16S rRNA with primary r-protein S4 were determined at 

both temperatures.66 The S4-specific footprints are different at the two temperatures 

studied; a conformational rearrangement of 16S rRNA is taking place at the heating of 

the S4/16S rRNA complex.66 More recently, the binding constant of S4 to the 5’ domain 

of the 16S rRNA was determined54 at  0oC and 37oC in the same study and a four fold 

difference was observed. The aforementioned studies emphasize how a combination of 

approaches can result in a better understanding of RNA–protein interactions, and also 

illustrate the power of chemical footprinting, which was the only biochemical technique 

that showed the existence of the conformational change of the RNP. 

 The conformational change from RI to RI* is temperature dependent, the same as the 

conformational change in the minimal complex S4/16S rRNA. There are other primary r-

proteins present in these assembly intermediates, along with some secondary binding 

proteins. Is their interaction with 16S rRNA also temperature dependent? How is the 
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conformational change from RI to RI* related to the conformational changes in the 

minimal complexes? Some of these questions will be addressed in this thesis.  

Directed hydroxyl radical probing in the study of the 30S subunit 

 In the past, directed hydroxyl radical probing has been used mainly to study the 

nucleic acid environment of proteins in static mature complexes.27,59,67-73 In the ribosome 

and ribosomal subunits it helped in the characterization of the RNA surroundings of 

components such as r-proteins or ligands like tRNA. Both proteins and RNA can be 

derivatized with Fe(II)BABE (where BABE is (1-(p-bromoacetamidobenzyl) 

ethylenediaminetetraacetate)), the proteins through cysteine59 (see Figure 4a and b) and 

RNA through phosphorothioate.67 By using the r-proteins as probes, for example the 

location of r-protein S20 was analyzed in 30S subunit, and helped clarify the controversy 

on its location.27 The 16S rRNA elements surrounding S5 in 70S ribosome were also 

mapped using this technique.71 Fe(II)BABE was tethered via 5’-phosphorothioate to in 

vitro transcripts, tRNA and tRNA analogs.67,74  

 Recently, directed hydroxyl probing from a derivatized r-protein was used to 

address conformational changes in the 16S rRNA during 30S subunit assembly.75,76 The 

recombinant system for in vitro reconstitution makes possible the construction of 

minimal RNPs that represent different stages of assembly.36,37 In these RNPs, Fe(II)-

tethered S15 protein was incorporated and the changes in the cleavage  patterns were 

used to assess the changes in the rRNA structure. The starting point was the binary 

complex of 16S rRNA/Fe(II)-S15 which represents one of the initial stages of 30S 

subunit assembly. More complex RNPs were also probed and the difference in the 

cleavage patterns was monitored. The differences observed shed light on the 
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rearrangement of rRNA elements in the presence of a certain r-protein.75,76 This approach 

gave insight into the assembly pathway and roles played by r-proteins in this process and 

showed that directed hydroxyl radical probing can be employed to study rearrangements 

that occur in nucleic acid-protein complexes during assembly, ligand association or other 

cellular processes that can be monitored in vitro. 

Chemical reagents in the study of RNA-protein interactions. Footprinting 

and directed hydroxyl radical probing 

 Footprinting and primer extension are techniques used in the studies presented in 

this dissertation. Footprinting involves chemical modification of nucleotides and allows 

identification of nucleotides affected by the binding of a protein to RNA.57 Chemical 

modification can be selective when base specific probes are employed.  Some of  the base 

specific probes interact only with unpaired nucleotides, revealing changes in the 

secondary structure of the RNA.57 Hydroxyl radicals cleave the sugar phosphate 

backbone nonselectively. Diminished reactivity of a nucleotide as a result of protein 

binding can be due to direct protein-RNA interaction or a conformational rearrangement 

of RNA.57 Hydroxyl radicals are not very sensitive to secondary structure and usually 

reduced reactivity after binding implies protein-RNA contact.77 Enhanced reactivity after 

binding implies a ligand induced conformational change. In our studies we are using 

dimethyl sulfate (DMS) which methylates selectively adenines (at position N1) and 

cytosines (at position N3), and 3-ethoxy-2-ketobutanal (kethoxal) which modifies 

reversibly guanines (by forming a cyclic adduct)57. Both DMS and kethoxal react only 

with unpaired nucleotides and are very sensitive to the secondary structure of RNA.57 By 



www.manaraa.com

 

 

 
80 

using the two types of footprinting probes a distinction can be made between direct RNA-

protein contacts and conformational changes that take place at some distance from the 

binding site.  

A different footprinting approach is hydroxyl directed probing, which involves 

generation of hydroxyl radicals by Fenton chemistry only in the area that surrounds a 

tethered iron ion.59 This method is very useful in mapping the RNA environment in the 

vicinity of the probe, which is in our case a protein. Hydroxyl directed cleavage involves 

a few steps. An r-protein is derivatized at a single position, generally a cysteine, with 

Fe(II) via the linker 1-(p-bromoacetamidobenzyl)-EDTA (BABE)59 (Figure 4a). Control 

experiments ensure that the derivatized protein can still interact with the rRNA in the 

same way as the wild type protein. The desired RNPs are assembled and the cleavage 

reaction is performed in the presence of hydrogen peroxide and ascorbic acid. Directed 

hydroxyl cleavage generates information about the direct surroundings of the protein, and 

it can be used to systematically map the RNA environment in the vicinity of the protein 

by tethering the Fe(II) to different positions in the protein.59 The aforementioned facts 

eliminate one of the disadvantages of base specific probes, the ambiguity in attributing 

protections that can appear due to direct contact or conformational changes. The intensity 

of the cleavage can be used also to estimate the distance between the Fe(II) and the RNA 

backbone and the large number of cleavage site specific for these probes provide a large 

number of data points. 

Primer extension. The method that makes possible the identification of changes 

in reactivity of the nucleotides toward different probes or the cleavage sites is primer 

extension57, 58 (Figure 5a). A complementary DNA of the RNA molecule of interest is 
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generated, through a reaction catalyzed by the enzyme reverse transcriptase. Initially, a 

short DNA oligonucleotide primer is annealed to a certain sequence of the target RNA. 

The reverse transcriptase is able to extend the DNA complementary to the studied RNA 

until a modified nucleotide is encountered, when the transcription stops or pauses, and a 

truncated DNA is generated. To be able to visualize each modified nucleotides, the 

probing conditions are such that only a fraction of the RNA is modified. Otherwise, only 

the shortest possible DNA fragment will be generated, since the reverse transcriptase will 

stop at the first modification. For detection, a radiolabeled nucleotide is incorporated in 

the complementary DNA. The samples are run on a denaturing sequencing gel, along 

with the sequencing lanes (A and G), which help in the localization of the modified 

nucleotides on the RNA. A control lane, which has unmodified RNA is also loaded (K), 

and natural stops which appear in all lanes are called K-bands (Figure 5b and c). The 

reactivity of almost every nucleotide can be monitored by this technique. For base-

specific probing enhancements and protections are observed in the gel. When the 

decrease in reactivity of a specific nucleotide is observed, compared to the reactivity of 

16S rRNA, a protection takes place and the increase in reactivity indicates an 

enhancement57,58 (see Figure 5b). For the hydroxyl directed cleavage experiments, all the 

bands that are not observed in the control lane or the ones that have a higher intensity 

identify positions of directed cleavage59 (Figure 5c).  
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Figure 1. Crystal structure of the Escherichia coli ribosome (70 S). The 30S (small) 

subunit is shown in blue for the 16S rRNA and dark blue for the ribosomal proteins, in 

front. The 50S (large) subunit is shown in gray for the 23S rRNA and the proteins in 

purple, in the back. 
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Figure 2.16S rRNA and the 30S subunit organization. (a) Secondary structure of 16S 

rRNA with its domains in different color. Red the 5’ domain, green the central domain, 

blue the 3’ major domain and in yellow the 3’ minor domain.78 (b) Tertiary structure of 

the 16S rRNA with its different three dimensional parts in the color corresponding to the 

domain in the secondary structure. Head is in blue, platform in red, body in green and 

penultimate stem in light grey.13 (c) In vitro assembly map of 30S subunit with proteins 

binding to the different domains in the respective colors.38,79 The proteins in the dark gray 

box are primary binding proteins, the ones in the light gray box are secondary binding 

proteins and the proteins in the white area are tertiary binding proteins. 
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 Figure 3. Three dimensional structure of 16S rRNA from 30S subunit with the primary 

r-proteins.13 16S rRNA is showed in gray, S4 in green, S7 in red, S8 in pink, S15 in lime 

yellow, S17 in dark purple and S20 in light blue. 
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Figure 4. Directed hydroxyl radical probing. (a) Structure of 1-(p-

bromoacetamidobenzyl)-ethylenediaminetetraacetic acid (BABE) the linker through 

which Fe(II) is tethered. (b) Scheme for directed hydroxyl radical probing of RNPs. 
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Figure 5. Primer extension. (a) Scheme for primer extension. (b) Schematic gel for base-

specific footprinting. Enhancements, protections and K-bands are indicated. (c) 

Schematic gel for directed hydroxyl radical probing. Cleavage sites and K-bands are 

indicated.  
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Chapter VI. Temperature-dependent RNP conformational 

rearrangements: analysis of binary complexes of primary binding 

proteins with 16S rRNA 

Laura-M. Dutcă, Indu Jagannathan, Joel F. Grondek, Gloria M. Culver 

Manuscript in preparation  

Abstract 

Ribonucleoprotein particles (RNPs) are important components of all living 

systems, and the assembly of these complexes is an intricate process. The 30S ribosomal 

subunit is composed of one large RNA (16S rRNA) and 21 ribosomal proteins (r-

proteins). 30S subunit assembly has been shown to involve sequential binding of r-

proteins and conformational changes of 16S rRNA. In vitro studies have revealed that 

assembly of 30S subunit is a highly temperature dependent process. Given these 

observations, a systematic study of the temperature dependence of 16S rRNA architecture 

in individual complexes with five primary proteins (S7, S8, S15, S17 and S20) was 

performed. Our data suggest that some temperature-dependent conformational changes 

occur and are consistent with downstream assembly events. As expected, all r-proteins 

can bind 16S rRNA at low temperature. However not all r-proteins/16S rRNA complexes 

undergo temperature-dependent conformational rearrangements. Some RNPs acquire the 

same conformation regardless of temperature, others show minor adjustments in 16S 

rRNA conformation upon heating, and finally others undergo significant temperature-

dependent conformational changes. Some of the architectures achieved in these 

temperature-dependent conformational rearrangements are likely required for further 
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assembly of the secondary and tertiary binding r-proteins. The differential interaction of 

16S rRNA with r-proteins illustrates a means for controlling the sequential assembly 

pathway for complex RNPs and may offer insights into aspects of RNP assembly.  

Introduction 

The interaction between RNA and proteins to form functional ribonucleoprotein 

particles (RNPs) is a very exacting process. Often, binding of protein to RNA involves 

major conformational changes in one or both molecules. Dynamic or disordered elements 

of the binding partners can adopt a defined conformation in the complex.1,2 This process 

is called induced fit, and it is believed to be a major component in the assembly of 

multicomponent RNPs. These changes can be dramatic, from completely disordered in 

the free form to strictly constrained in the complex, or somewhat more subtle, such as 

changes in domain orientation.1,2 The presence of multiple domains in one of the partners 

also makes possible sequential binding to these different domains in a binding cascade. 

Moreover, conformational rearrangements can be propagated throughout the molecule 

and are not limited to the binding interface. While the understanding of RNA-protein 

interactions has been greatly enhanced by advances in RNP crystallography, a detailed 

view of conformational changes during RNP assembly is still lacking. Systematic studies 

using a well characterized model system, the 30S ribosomal subunit will advance our 

understanding of events central to RNP assembly. The Escherichia coli (E. coli) 30S 

ribosomal subunit is composed from 16S ribosomal RNA (rRNA) and 21 ribosomal 

proteins (r-proteins), and it can be a rich source of information for the student of RNA-

protein interactions. The crystal structure of the ribosome from E. coli was determined 

recently,3 and detailed structures of the individual ribosomal subunits from multiple 
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organisms are also available.4-6 These structures are very useful in analyzing assembly 

events, as they represent an end point for the assembly process. Additionally, the 

structures of some of the free r-proteins have also been determined.7-12 These findings 

allowed comparisons of free and RNA bound r-proteins, leading to inferences about 

changes in r-protein structure, as a result of RNP assembly. However, very few detailed 

structures of naked 16S rRNA are available and thus similar inferences about RNA 

conformational changes during ribosome assembly are lagging.  

Some advances in understanding RNA conformational changes have arisen from 

studies of E. coli 30S subunit. One reason for these advances is the ability to reconstitute 

the 30S subunit in a functional conformation in vitro from its isolated components.13 

RNPs of different complexities can be readily formed and this system has allowed the 

elucidation of certain aspects of the formation of 30S subunit architecture. Distinct three-

dimensional structures arise when the four secondary structural domains of 16S rRNA are 

complexed with the appropriate r-proteins. In the 30S subunit, the 5’ domain of 16S 

rRNA forms the body of the 30S subunit, the central domain folds into the platform, the 

3’ major domain forms the head and the 3’ minor domain is mainly folded into the 

penultimate stem.3,14 Thus the secondary structure of 16S rRNA is influential in 

determining 30S subunit architecture.  

The sequential binding of the r-proteins to 16S rRNA is a critical step in 

orchestrating formation of functional 30S subunits. Traditionally, the r-proteins have 

been categorized into three assembly classes, as indicated in the in vitro assembly map 

(Figure 1a).15,16 The r-proteins that bind directly and independently to 16S rRNA are 

classified as primary, and they are S4, S7, S8, S15, S17 and S20. The secondary binding 
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proteins, S5, S6, S9, S11, S12, S13, S16, S18 and S19 bind 16S rRNA after the assembly 

of at least one primary protein, while the tertiary binding proteins, S2, S3, S10, S14 and 

S21, require association of at least one primary and one secondary r-protein for their 

binding. The r-proteins can also be slightly differently classified based on the dynamics 

of their association with 16S rRNA during assembly at different temperatures.17 The r-

proteins were classified in the following assembly kinetic classes: early binders (S4, S6, 

S11, S15, S16, S17, S18, S20), mid binders (S7, S8, S9, S13, S19), mid-late (S5 and S12) 

and late (S2, S3, S10, S14, S21) binders by following the emergence of their footprints 

during assembly17. 

During in vitro reconstitution of 30S subunits the primary and secondary binding 

r-proteins associate early in assembly. A 16S rRNA containing RNP, known as RI 

(Reconstitution Intermediate), containing these r-proteins is formed at low temperature. 

However, a temperature dependent step is essential for the formation of a second 

intermediate, RI*, with virtually the same composition as RI. A large compaction of the 

RNP occurs during this activation event, suggesting that the 16S rRNA and these r-

proteins undergo a conformational rearrangement in response to the temperature 

activation, and that this change is required for assembly to proceed to completion.18-21 In 

addition, in vivo 30S subunit assembly defects are associated with cold-sensitivity and 

assembly intermediates similar to those observed in vitro have been isolated.22-24 Thus it 

appears that analysis of temperature-dependent conformational changes in vitro may have 

some bearing on the in vivo assembly pathway. 

Analysis of 30S subunit assembly in the presence of all or many of the r-proteins, 

have revealed global trends, without dissecting the role of each of the individual r-
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proteins. The presence of all r-proteins allows the concerted changes in the conformation 

of 16S rRNA, but by necessity obscures the contribution of individual proteins. For 

example, in the study of the temperature dependent dynamics of 30S assembly, the r-

proteins were classified in different kinetic classes based on their footprints observed in 

previous studies of less complex RNPs.17 For a few primary binding proteins only some 

of their footprints were observed. For example, there are approximately 15 protections 

and enhancements specific for S15 in a minimal RNP,25 only five of them could be 

assigned during the ensemble assembly experiment.17 Similarly, in the minimal complex 

S7/16S rRNA S7 footprints more than 60 nucleotides,26 but only about half of this 

number were attributed to S7 in the ensemble studies.17 Thus, while these bulk 

approaches can be illuminating, many changes can be masked or invisible, and further 

analysis of smaller RNPs may be necessary to fully dissect the changes during assembly 

of complex systems. 

Conformational changes play an important role in the assembly of the 30S 

ribosomal subunit. The binding of r-proteins involves conformational changes of 16S 

rRNA at the RNA–protein interface, but they can also bring about conformational 

changes at some distance from this interface. As mentioned, the transition from RI to RI* 

involves a large conformational change and this can be facilitated by increased 

temperature and some analysis of these changes has been performed in a complete 

assembly reaction.20,21 It could be of great interest to determine more exactly which r-

proteins contribute to these specific conformational changes during the assembly process, 

to further our understanding of the roles of r-proteins in orchestrating the architectural 

changes. This approach has proven useful in analyzing the interaction of 16S rRNA with 
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an r-protein, S4, as function of temperature.27 S4 is a primary multidomain binding 

protein9 (Figure 1a) that is considered an assembly initiator,28 and it is a component of RI 

and RI*.18 A temperature-dependent conformational rearrangement of 16S rRNA in the 

presence of S4 was observed when the complexes were formed at different temperatures 

(0, 30 and 42oC).27 These changes were revealed by differences in the chemical 

modification pattern of 16S rRNA in these complexes. This approach may be particularly 

fruitful now as the more recently available structures of 30S subunits may make it 

possible to better understand the implications of temperature influence on the r-protein-

rRNA interaction, and subsequently on assembly. 

 The structures of 30S subunits have revealed that some of the r-proteins bind 

multiple domains of the 16S rRNA and some have multiple domains themselves,29 

raising the possibility that the in vitro temperature requirement can be used to 

deconvolute the interaction of these multidomain partners. While the secondary structure 

of rRNA is usually well defined even in the free form, tertiary structures specific for 

functional 30S subunit are achieved only after r-proteins bind. To our knowledge, besides 

the paper of Powers et al. (1995) there are few studies in which protein-RNA interactions 

at different temperatures are dissected by structural methods. Some studies have shown a 

dependence of the kinetics of RNA-protein interactions on temperature. Additionally, 

there are a few studies in which small differences in the RNA-protein binding constants 

at different temperatures were observed,30 but no detailed structural analysis of the 

complexes was undertaken. Moreover, such studies of large RNA-protein complexes are 

particularly lacking and one could imagine that temperature is an important factor for 

long range tertiary interactions adopted by large RNAs. Another possible role for the 
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observed temperature effects on RNA-protein interactions could be control of sequential 

binding of proteins in complex RNPs, like the ribosomal subunits. Therefore it might not 

be surprising that in vitro assembly of 30S subunits is temperature dependent and that the 

interaction of at least one r-protein, S4, with 16S rRNA is influenced by temperature. The 

data presented in this manuscript reveals that some of the possible mechanisms appear to 

be involved in r-protein/16S rRNA interactions. However, there appear to be distinct 

differences in how these RNPs form and the influence of temperature on their 

conformation.  

Materials and methods 

16S rRNA/r-protein complex formation. The complexes were prepared from 

16S rRNA and the 30S subunit recombinant r-proteins isolated as described previously.31-

33 The buffers used at the formation of the RNPs are: reconstitution A minus buffer (RA-) 

which is 20 mM K+-Hepes (pH  7.6), 20 mM MgCl2, 6 mM β-mercaptoethanol; 

Reconstitution A plus buffer (RA+) which has the same composition as RA-, plus 330 

mM KCl. The complexes were formed as follows: natural 16S rRNA in RA- was 

incubated at 42°C for 15 minutes, followed by 10 minutes on ice prior to complex 

formation. 40 pmoles of 16S rRNA were mixed with 200 or 240 pmoles of the 

appropriate r-protein, and the final KCl concentration was adjusted to 330 mM, by using 

the appropriate ratios of RA+ and RA-, and taking into account that the protein solutions 

are 1 M in KCl. The reaction mixture was incubated at the desired temperature, 0°C or 

42°C for 1 hour, or for the shifted complex, 30 min at 0°C and 30 minutes at 42°C. Two 
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samples containing only 16S rRNA were also incubated at 0°C or 42°C, for comparison. 

All samples were then incubated on ice for ten minutes, before probing. 

Chemical probing and primer extension analysis of the 16S rRNA/r-protein 

complexes.  Chemical probing of 16S rRNA, and the RNPs with kethoxal and DMS was 

performed as previously described,31,34 on ice. The probing times were: kethoxal, 60 min 

and  dimethyl sulfate (DMS), 120 min. Primer extension was performed essentially as 

described.31,34 

Results  

In an attempt to dissect the influence of temperature on RNA-protein interactions, 

a footprinting study of the complexes of 16S rRNA and individual primary r-proteins 

formed at different temperatures was undertaken. Complexes between individual primary 

binding r-proteins and 16S rRNA are formed at different temperature and the interactions 

are analyzed by chemical modification and primer extension. This approach should allow 

temperature-dependent conformational changes to be revealed. This systematic analysis 

of the independent interactions of all of the primary binding r-proteins will allow a better 

understanding of the rRNA/r-protein interactions and of the importance of temperature in 

the assembly of the 30S subunit. 

Complex formation and chemical probing of binary RNPs. Individual 

complexes of natural 16S rRNA with the recombinant primary binding proteins S7, S8, 

S15, S17 and S20 were formed by incubating the reaction mixture at either 0oC or 42oC 

and a third complex was formed by incubating the reaction mixture first at 0oC and then 

at 42oC, and herein will be referred to as “shifted” complex. Once complexes had been 

formed, all particles were placed on ice and probing was performed at low temperature. 
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This approach will allow the detection of r-protein facilitated temperature-dependent 

differences in 16S rRNA architecture and for the “shifted” complex will reveal if either 

the low or high temperature interactions are predominant. The reactivity of 16S rRNA in 

these complexes and of naked 16S rRNA incubated at the appropriate temperature, 

toward the base specific probes dimethyl sulfate (DMS) and kethoxal was investigated by 

primer extension analysis. In the previous work on the S4/16S rRNA RNP, no 

temperature-dependent differences were observed when the RNA backbone was probed27 

and our findings for other RNPs are consistent with this earlier work. The reactivities 

observed for naked 16S rRNA at 42oC and complexes formed at 42oC were very similar 

to the ones previously published for similar conditions.25,26,35 In some cases the 

reactivities observed at 0oC are clearly distinct from those observed at 42oC. 

Interestingly, only some of the primary binding r-proteins/16S rRNA RNPs revealed 

temperature dependent conformational changes. Our data reveal that the footprints 

observed for the shifted complex were essentially the same as those observed for the 

complexes formed at 42oC, indicating that the particles formed at low temperature can 

transition from one conformation to another (but not the opposite). Given the similar 

probing patterns in the shifted complexes and those formed at 42oC these two sets of 

RNPs will be discussed as one. The results indicate that the primary binding protein/16S 

rRNA RNPs can be classified into three distinct groups as regards temperature-dependent 

conformational rearrangements. One class reveals a large temperature-dependence, as 

previously reported for S4.27 A second class reveals slight temperature-dependence, 

where most of the footprints are observed at low temperature, but the intensity is not fully 

reached until after heating. Somewhat surprisingly, the proteins from the third class 
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reveal virtually no temperature-dependence. Thus it appears that not all primary r-

protein/16S rRNA complexes undergo temperature-dependent conformational 

rearrangements. Data for each of the r-protein/16S rRNA complexes will be discussed 

below. Throughout this manuscript, when we refer to previous footprints these were 

determined for complexes of r-proteins with 16S rRNA that were formed at high 

temperature (a comprehensive low temperature analysis is lacking). 

S20/16S rRNA complexes. X-ray crystallographic studies of 30S subunits reveal 

that S20 is one of the few r-proteins that interacts with two different domains of 16S 

rRNA, the 5’ domain (body) and H44 of the 3’ minor domain3, 36(Figure 1b). This is 

consistent with all of S20 footprints being localized in the 5’ domain and in H4435. A 

model of 5’ to 3’ assembly and the positioning of helix 44 across the body in the small 

subunit, might suggest differential interaction of S20 with these domains. However, no 

differences in the footprints were observed between the S20/16S rRNA complexes 

regardless of the temperature at which they are formed (see Table 1, Figure 2a-d, Figure 

3). Thus, it appears that in the minimal binary particle S20 and 16S rRNA interact in a 

temperature independent manner, and for the S20/16S rRNA complex the “desired” 

conformation is established even at 0oC. These results are in marked contrast to those 

previously reported for the S4/16S rRNA RNP.27 

S17/16S rRNA complexes. Structural studies revealed that in the context of 30S 

subunits, r-protein S17 makes contacts with helix 11 of the 5’ domain and helices 20, 21, 

22 of the central domain3, 36(Figure 1b). However in the minimal S17/16S rRNA particle 

which has been used to identify S17-dependent footprints, the chemical footprints 

observed for S17 are present almost exclusively (all but 3) in helix 11.35 Our results 
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reveal that the footprints, which are all protections, are the same no matter the 

temperature of S17/16S rRNA complex formation (Table 1, Figure 2 e, f, Figure 3). 

Thus, similar to what was observed with S20 (see above), temperature seems to have no 

effect on the footprints of r-protein S17 on 16S rRNA. These results suggest that r-

protein dependent organization of portions of the 5’ domain can occur in a single step and 

that the temperature of complex formation has no obvious effect on this interaction. 

S15/16S rRNA complexes. The footprints specific for S15 in the minimal RNP 

are localized in helices 22 and 2325 and these are very consistent with the S15 binding 

site, the three way junction between H20, H21 and H22 revealed in the full 30S subunits 

(Figure 1b).3, 36 Thus, in minimal and more elaborate particles,37 S15 interactions are 

restricted to the central domain of 16S rRNA. For the S15/16S rRNA complexes the 

results are different than those observed for S20 and S17; slight temperature-dependent 

conformational adjustments were observed for the S15/16S RNP (Table 1, Figure 2 g, h, 

Figure 3), and all of the temperature dependent footprints follow a similar pattern (Figure 

3). All of the protections (temperature dependent or not) appear at 0oC, but four of these 

develop in intensity at higher temperature. Only one temperature dependent footprint is 

observed in helix 22, where the majority of the crystal contacts between S15 and 16S 

rRNA are observed3 (Figure 3). The majority of these changes in reactivity of nucleotides 

due to altered temperature are present in helix 23. Four temperature dependent footprints 

are observed at nucleotides within helix 23, which is not involved in direct RNA-protein 

contacts in the crystal structure of 30S subunits3. These results suggest that binding 

occurs at low temperature but that the association of S15 with 16S rRNA is further 

accommodated at higher temperature. 
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On the three dimensional structure of 16S rRNA from the 30S subunit, the 

protections coming from S15 are oriented toward the head of 30S subunit (Figure 4a). 

The enhancements brought by the binding of S15 are also located towards the head of the 

30S subunit. The enhancements which are not temperature dependent are more toward 

the exterior of the 30S subunit while the ones which emerge at 420C are toward the 

interior (Figure 4b). Interestingly, it appears that the temperature-dependent and 

temperature independent footprints are differentially clustered within the 30S subunit 

(Figure 4a, b). 

S8/16S rRNA complexes.The footprints specific for S8 in the minimal particle 

are present throughout the central domain and a few are observed in the 5’ domain.25 

More precisely the 530 loop, 570 region, helices 20, 21 and 23, and also the 820 and 860 

regions are footprinted by S8.25 S8 footprints near domain junctions both for the 5’ and 

central domain, and for the central domain and the 3’ domain (Table 1, Figure 2 i-n, 

Figure 3). No temperature dependent changes are observed in the 3-way helical junction, 

H20/H21/H22, in the S8/16S rRNA complex (Figure 3). In the RNP containing S8 and 

16S rRNA formed at 0oC, many of the enhancements and protections specific for the 

binding of S8 at 42oC are observed (Figure 2 i-n, Figure 3). However, most nucleotides in 

helix 23 (Figure 2k, l), 530 and 570 loops (Figure 2i, j), which are footprinted by S8, 

reveal a temperature dependent requirement for attaining the full extent of footprinting 

(Figure 3). Hence the majority of the S8 specific footprints are not as intense at 0oC as at 

higher temperature. The largest temperature dependent differences in the reactivities are 

observed for the nucleotides from helix 26 and the 860 region (Figure 2m, n, Figure 3c). 
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These results suggest that a conformational rearrangement of the S8/16S rRNA complex 

may be involved in organizing the more 3’ elements of the S8 binding site.  

The S8 footprints which reveal differential temperature-dependent conformational 

changes are also somewhat clustered in the mature 30S subunit. On the three dimensional 

structure of 16S rRNA from 30S subunit the footprinting classes almost appear to be 

layered (Figure 4c and d). All the protections that appear at 0oC are clustered, and they 

are in the lower part of the 30S subunit. The protections that emerge only at 42oC are also 

clustered and are localized more toward the head of the 30S subunit (Figure 4c). The 

protections that appear at 0oC and achieve a higher level of footprinting at 42oC are 

grouped and are somewhat in between the other two sets. Thus it appears that there is a 

relative spatial context to the conformational rearrangement associated with the S8/16S 

rRNA particle. The aforementioned results may reflect a primary binding event followed 

by an adjustment of 16S rRNA in the S8/16S rRNA complex at higher temperature.  

S7/16S rRNA complexes. S7 nucleates the assembly of the head of the 30S 

subunit, by binding to two multiple-stem junctions of the 3’ domain of 16S rRNA, 

H28/H29/H43 and H29/H30/H41/H42 (Figure 1b).3, 36 Consistent with its RNA 

interactions in the 30S subunit, binding of S7 has been shown to affect the reactivity of 

many 16S rRNA nucleotides in footprinting experiments.26 Our data indicate that the 

S7/16S rRNA RNP undergoes extensive temperature-dependent conformational 

rearrangements (Table 1, Figure 2o-s, Figure 3). Large differences are observed between 

the reactivities of 16S rRNA nucleotides in complex with S7 when the RNP is formed at 

either low or high temperature. For all the regions footprinted by S7 temperature-

dependent alterations in reactivity are observed, suggesting that conformational 
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rearrangements are prevalent for this complex (Figure 3c). When the S7/16S rRNA 

containing RNP is formed at low temperature only approximately 16% of the high 

temperature footprints are detected. Interestingly, there is a correlation between footprints 

that are observed at 0oC and direct contacts between S7 and 16S rRNA that are apparent 

in the 30S subunit.3 In particular, at 0oC, protections and enhancements were observed in 

the 1330 region (mostly enhancements) and 1350/1370 stem-loop structure (only 

protections) (Figure 2q-s, Figure 3a), but most of the other expected footprints are 

incomplete or absent. (Direct contacts between S7 and the 1350/1370 loop of 16S rRNA 

are present in the structure of the 30S subunit.) Strong temperature dependence is 

observed at the three way junction H28/H29/H43 and the multiple-stem junction 

H29/H30/H41/H42, suggesting that these elements become associated with S7 as a 

consequence of a conformational rearrangement (Figure 3c). 

The majority of the S7 footprints that appear at 0oC are grouped together on the three 

dimensional structure of 16S rRNA from 30S subunits3 (Figure 5c and d). They are 

localized in the region of 16S rRNA that is near the N-terminus of S7. The protections 

that appear at 42oC are more dispersed; nonetheless many of them are clustered along one 

region of the head (Figure 5c). There is also a trend that can be related to the proximity of 

the sites to S7 and the extent of temperature dependence observed: the enhancements 

which are more proximal to S7 are initially observed at 0oC and become more intense at 

42oC, while the ones that are more distal from S7 mostly appear only in the complex 

formed at 42oC (Figure 5d). Thus it appears that S7/16S rRNA undergoes an extensive 

temperature-dependent conformational rearrangement and that this rearrangement is 

consistent with the architecture of the 30S subunit. 
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Discussion 

The results presented in this manuscript and those published earlier by Powers and 

Noller27 clearly illustrate that the interaction of primary binding r-proteins with 16S 

rRNA can be significantly influenced by temperature. However, the results herein 

demonstrate that not all the primary binding r-protein/16S rRNA particles undergo 

temperature-dependent conformational rearrangements. Since the previous studies that 

revealed the changes for the S4/16S rRNA complex were performed prior to the 

determination of the 30S subunit structure, we will revisit these data to provide a full 

picture of the temperature-dependent conformational changes associated with complexes 

of 16S rRNA and primary binding r-proteins. The study of these relatively simple RNPs, 

in isolation from the remaining small subunit components, has allowed a detailed analysis 

of their specific interactions. These studies allow insight into multiple mechanisms of 

primary binding protein interaction with 16S rRNA and underscore the complexity of 

30S subunit assembly and RNP formation in general.  

The 16S rRNA/r-protein RNPs can be classified in three categories based on the 

effect of temperature on their conformation: 16S rRNA/r-protein RNPs for which the 

conformation of 16S rRNA is not influenced by temperature (S17 and S20), 16S rRNA/r-

protein RNPs that show some temperature dependence (S8 and S15) and the last type, 

16S rRNA/r-protein RNPs whose conformation shows a marked dependence on 

temperature (S4 and S7) (Figure 3, Figure 6). This suggests that the assembly of 16S 

rRNA containing RNPs can occur at distinct stages and that some of these RNPs can 

progress from one conformation to another in a temperature dependent manner, while 

others appear to be less dynamic. 
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Overall, there is a good correlation between protein binding sites and temperature-

dependent conformational rearrangements of the RNP. The r-proteins S17 and S20 for 

which RNP conformation is not influenced by temperature, bind to the 5’ domain. S8 and 

S15 which bind in the central domain of 16S rRNA form RNPs that show some 

temperature dependence. Lastly, S4 and S7, whose RNPs show the highest temperature 

dependence, and are considered assembly initiators,28 bind to the 5’ domain and 3’ major 

domain, respectively. The presence of temperature dependent stages in the formation of 

RNPs and the conformational rearrangements of 16S rRNA during the interaction with 

some of the primary r-proteins (S4 and S7) suggest a temperature-dependent induced fit 

mechanism. Also, it is still likely that induced fit can occur in the low temperature 

binding event. An induced fit mechanism was observed for the binding of S15 to 16S 

rRNA,2 yet few temperature dependent conformational changes are observed with this 

RNP. 16S rRNA seems capable to interact differentially with the primary binding r-

proteins, and thus differential interaction with the other r-proteins, is likely as well. 

For the RNPs that display strong temperature-dependent conformational 

rearrangement, a concern might be whether binding occurs at low temperatures or if 

binding constants are the same at various temperatures. While there are only a few 

studies in which binding of r-proteins to 16S rRNA are analyzed as a function of 

temperature, those that have been done are supportive of association of r-proteins with 

16S rRNA at low temperatures.38-41 Binding constants were determined at 0oC and 42oC 

for S438 and S8. The binding constants for S4 association with the appropriate sub-

fragments of 16S rRNA have the same order of magnitude (107) but the value is about 

four times lower at low temperature than observed at high temperature. For r-protein S8 
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the constants were reported for binding to full length 16S rRNA and the binding constant 

at low temperature was about three times lower than at higher temperature, but again the 

same order of magnitude was observed. The binding rates during assembly for all of the 

30S subunit r-proteins except S7 (due to technical problems), were determined by pulse 

chase quantitative mass spectrometry at 15oC and 40oC.41 While for some primary 

binding r-proteins temperature-dependent rate differences are observed, nonetheless 

binding is present at 15oC, and the rates are consistent with the time of complex 

formation in our experiments. In addition, in vitro 30S subunit assembly studies also 

indicate that primary and secondary binding r-proteins can bind at low temperature, as an 

intermediate containing 16S rRNA and these r-proteins is readily detectable.18,19 Based 

on these findings it is clear that primary binding r-proteins can associate with 16S rRNA 

at low temperatures. Thus, these temperature-dependent footprinting changes are not 

likely due only to association events, but most probably reflect RNP conformational 

changes. 

R-proteins that bind to 16S rRNA in a temperature independent stage. Our 

findings for S17 and S20 are consistent with other studies looking at assembly dynamics 

in the context of all the small subunit r-proteins.17,20,21 S17 and S20 are the only r-proteins 

that have all of the corresponding footprints in one kinetic class, and they are classified as 

expected, as early binders.17 These data are also consistent with a model for association 

of r-proteins with 16S rRNA in a 5’ to 3’ manner. The main footprints for both of these r-

proteins lie in the 5’ domain, and would be expected to bind in an early assembly event. 

Thus it appears that S17 and S20 have similar properties when studied in isolation or in 

ensemble studies. 
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R-proteins that undergo temperature dependent conformational 

rearrangements with 16S rRNA. S15 is a small 16S rRNA binding protein, for which 

we observed only a few temperature dependent footprints in the S15/16S rRNA complex. 

Virtually all of the footprints are observed at 0oC however, some change in intensity at 

higher temperature (Figure 3). Also, many of its footprints coincide with direct RNA-

protein contacts in the 30S subunit.3,25 The structure of free S15 has been determined by 

both NMR11 and X-ray crystallography and is very similar to the structure of S15 in the 

30S subunit,3 suggesting that S15 can obtain its structure in the absence of 16S rRNA. 

Binding of S15 to 16S rRNA has been shown to result in a large conformational 

rearrangement of the RNA,2 which occurs independently of temperature, both in a small 

fragment or the full length 16S rRNA.  Hence our findings are consistent with a single 

step assembly event for the S15/16S rRNA complex. 

The r-protein S15 is one of the proteins were the advantages of studying minimal 

complexes are obvious. Only five footprints specific for S15 were identifiable in the 

assembly dynamics study,17 while in our experiments we were able to assess majority of 

the S15 dependent footprints. Additionally, while we observe many footprints at 0oC, 

only one footprint was attributable to S15 at that temperature, when all the r-proteins are 

present.17 Thus our experiments give a more detailed understanding of the S15 binding 

process. 

The primary r-protein S8 interacts with an extensive region of the central domain 

of 16S rRNA and it is a mid-binder from kinetic point of view.17 In this study it was 

shown that the S8/16S rRNA complex undergoes a temperature-dependent 

conformational rearrangement. The temperature dependent footprints are spatially 
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localized and hence could suggest a sequential interaction. At 0oC the majority of S8 

footprints are present, albeit with a significantly lower intensity. The exception is that 

three footprints in helix 26 are absent at low temperature (Figure 3a). On the structure of 

16S rRNA from the 30S subunit, protections induced by S8 show a nice distribution 

along S8, and spanning from the body towards the head of the 30S subunit. The 

protections in the body appear at 0oC, along with some that continue to develop at 42oC 

which are closer to the head of the 30S subunit (Figure 4c). The protections that appear 

only at 42oC are located in the neck of the 30S subunit. It appears that S8 facilitates 

adjustments in the region towards the eventual head at higher temperature, after 

interacting with helix 21 across the back of the body at low temperature. Thus S8 might 

play a critical role in aligning the 3’ major domain relative to other structural domains of 

the 30S subunit.  

Once again our studies using the minimal S8/16S rRNA binary complexes reveal 

more details of this RNP, than assembly studies using a full complement of r-proteins.  

When binding of S8 is followed in the presence of all the r-proteins, during 30S 

assembly, no footprints specific for S8 were observed at 0oC.17 Based on this data one 

cannot conclude if S8 binds to 16S rRNA at low temperature. However, when the 

minimal S8/16S rRNA complex is formed at the same temperature, the majority of S8 

specific footprints are observed (Figure 3a). In fact, the majority of the footprints specific 

for S8 are observed at low temperatures, although many of them are only partial (Figure 

3a and b).  Thus our results are not in complete agreement with the classification of S8 as 

a mid-binding r-protein. The overall data might support a designation of early-mid 
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binding protein for S8 since it can bind at an early phase, as epitomized by low 

temperature association, but than it is further accommodated later in assembly.  

R-proteins that have distinct temperature dependent stages in the interaction 

with 16S rRNA. The head of the 30S subunit consists of short helical segments that are 

organized into a compact structure in the presence of many r-proteins. S7 is the only 

primary protein that binds to the 3’ major domain initiating assembly,3,15 and thus is 

critical for the binding of other r-proteins to this region. The area of 16S rRNA which is 

organized by S7 is very large, and this organization seems to require both S7 and a 

temperature-dependent conformational rearrangement. Our data suggest that binding of 

S7 occurs in two separable phases, allowing a model for the sequential interaction of S7 

with 16S rRNA to be proposed. In this model, the highly charged N-terminus and the first 

helical elements of S7 would associate with 16S rRNA in the initial phase, while the 

second binding event involving the C-terminal portion of S7 would occur in the second 

phase, as revealed by temperature-dependent changes (Figure 5c, d). This idea is 

consistent with the studies in which the binding constants for the complexes formed 

between 16S rRNA and fragments of S7 were determined.42 If the N-terminus of S7 is 

deleted binding to 16S rRNA is destroyed. When the N-terminus of S7 is intact but other 

parts of S7 are deleted, the binding constant decreases but the protein-RNA interaction 

still takes place.42 These findings are consistent with in vivo studies which indicate that 

when the N-terminus of S7 r-protein is deleted, the assembly efficiency is reduced to 

about 3% of that observed for full length S7.43 Thus our data reveal a model for a two 

stage association of S7 with 16S rRNA that is supported by other in vitro and in vivo 

studies, and likely reveal details of bipartite association of r-proteins with 16S rRNA.  
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A temperature-dependent conformational rearrangement in the complex S4/16S 

rRNA was revealed by a chemical probing study,27 and thus first revealed the utility of 

this approach for dissecting conformational rearrangements of 16S rRNA containing 

RNPs. In light of the results presented in this study, and with the advantage of 

information of the 30S subunit, discussion of the S4/16S rRNA complex should be 

revisited. The S4-specific protections that appear at 0oC are clustered near the lower part 

of S4 (Figure 5a), toward the bottom of 30S subunit structure. The protections which 

appear only at 42oC are located towards the head of 30S subunit, more proximal to the 

upper part of S4. From this, one could speculate that as suggested earlier for S7, the 

binding of S4 takes place in two steps. First, the central more globular domain of S4 

would bind, and then the N- and C-termini would bind latter, as revealed by the 

temperature dependence. As the temperature-dependent S4 specific footprints are more 

dispersed throughout the 16S rRNA, and many of them are quite remote from the area of 

S4/16S rRNA direct contact (Figure 5b), it could be suggested that S4 facilitates long 

range conformational rearrangements during the course of 30S subunit assembly. 

General trends in primary r-protein-16S rRNA interaction. An interesting 

correlation exists between temperature-dependent conformational rearrangements in the 

r-protein containing RNPs and the size of the r-protein (see Figure 6). RNPs containing 

the two smallest primary binding proteins S17 and S20 show no temperature dependence, 

while only a slight temperature dependence is observed for the RNPs containing the next 

smallest r-protein, S15. Continuing the trend, S8/16S rRNA shows more temperature 

dependence than the three smaller r-proteins mentioned above while RNPs containing S4 

and S7, the largest primary binding r-proteins, show the highest degree of temperature-
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dependent conformational rearrangement. As expected, the smaller r-proteins tend to 

contain only one domain3, 29 and may bind in a single event. The larger r-proteins tend to 

be composed from multiple “domains” or a more globular domain and some extended 

less canonical protein structures.3,29 Thus these r-proteins may interact with 16S rRNA 

differentially. 

The primary r-proteins S17 and S20 show little or no temperature dependence for the 

interaction with 16S rRNA. S20 and S17 are small, with highly regular protein 

structure.3,29 NMR studies of S17 from Bacilus stearothermophilus (B.st.) showed that 

the core of the protein is in the same conformation as in the 30S subunit even in the free 

state3, 10. While, there are some differences in the structures of S17 from E. coli and B. st., 

the core structures are similar, with the main differences found in loops and tails. The 

core of the protein interacts with the 5’ domain of 16S rRNA.3,29 Interestingly, it was also 

shown that the 5’ domain of naked 16S rRNA has structural features similar to those 

observed in the 30S subunit.44 These two binding partners may be well structured in the 

unliganded form and associate in a single event. The structure of S20 in free form has not 

been determined yet, but in the 30S subunit S20 is a three helix bundle.3,29 Since it also 

binds the 5’ domain, and it has a very compact structure it is highly possible that it will 

behave similarly to S17. Thus, if both the rRNA and r-protein have structures similar to 

the bound forms before their interaction, it is expected that the conformational 

rearrangements at binding are going to be more minimal and thus the lack of temperature-

dependent conformational rearrangements is not surprising.  

For S15, the situation is different than for S17 and S20. Structural studies suggest that 

S15 does not undergo large conformational changes upon binding, although the N-
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terminal helix of S15 may be dynamic and thus change orientation.2,11,37 Conversely, it 

has been demonstrated that 16S rRNA goes through a big conformational rearrangement 

upon S15 binding.2 Our results suggest that the conformational changes in rRNA can 

largely take place even in the absence of heating (Figure 3). Thus, for the S15/16S rRNA 

complex, induced fit likely occurs mainly in a single event and might be largely restricted 

to the rRNA. 

For the RNPs containing r-proteins that have multiple domains (S4, S7 and S8) more 

temperature-dependent conformational rearrangements are observed. Beside the fact that 

they have more complex structures, their binding also affects more extended regions of 

the 16S rRNA. Therefore, it is likely that these r-proteins play a role in organizing long 

range interactions during the 16S rRNA folding and 30S subunit assembly. For S7, it was 

shown that the structure of the free protein and the protein in 30S subunit are 

different,3,7,8 while for S4 it seems that the core structure is the same before and after 

binding3,9,12,29 although information is only available for a subfragment of S4 in the free 

form. In the case of S8, whose binding is important for the organization of the central 

domain, temperature augments the number of footprints with 16S rRNA. For S4 and S7, 

primary r-proteins whose binding shapes large regions of 16S rRNA, temperature plays a 

very important role in the conformation of the RNP containing either r-protein. S4 and S7 

show distinct temperature dependent stages and in general, the long distance effects are 

observed at higher temperature. Major conformational rearrangements in the rRNA are 

taking place upon heating the complex, and allow further events in the assembly of the 

30S subunit.  
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Implications for 30S subunit assembly: Assembly of secondary r-proteins. 

The conformational changes observed for some of the 16S rRNA-primary r-protein 

containing RNPs have significant implications for the subsequent assembly events. The 

majority of the experiments performed to analyze the assembly dependence of the small 

subunit r-proteins were carried out at elevated temperature. Thus the work presented here 

aids in our understanding of the requisite order that has been observed.  

In the important 530 loop, enhancement of specific nucleotides requires both S825 and 

elevated temperature. In subsequent stages of assembly these enhanced nucleotides 

become less reactive to chemical probes in an S5-dependent manner.45 Thus r-protein 

mediated temperature-dependent conformational changes can be critical for perpetuation 

of the 30S subunit assembly cascade. 

One of the secondary binding r-proteins that has a very important role in the 

formation of the first low temperature intermediate in the assembly of the 30S subunit 

(RI) is S16.20,21,46 Chemical probing experiments have been performed to determine 

changes in 16S rRNA folding during the transitions from naked 16S rRNA to RI, RI to 

RI* and finally RI* to fully assembled 30S subunits, using mixtures of r-proteins.20,21 

These experiments attribute 13 changes in reactivity observed only in the 16S rRNA to 

RI transition to S16 alone or S16 in combination with S20 (seven changes).20,21 Thus S16 

must be able to bind to a 16S rRNA containing RNP at low temperature. Interestingly, 

S20 and S4 are the two primary proteins required for the assembly of S16 (Figure 1a).47 

The S20/16S rRNA complex does not seem to undergo a temperature-dependent 

conformational rearrangement and thus once S20 has bound at low temperature it is 

possible that S16 can associate. It was shown that binding of S16 to the region formed by 
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the nucleotides 1-353 and the penultimate stem is mainly controlled by the initial binding 

of S20.35 Binding of S16 is also dependent on the interaction of S4 with 16S rRNA, as it 

was mentioned earlier. S16 has many footprints both in the 5’ domain and the central 

domain.35 Probably, S4 modulates binding of S16 to other regions of 16S rRNA, in 

particular the central domain. It is possible that S4 and S16 containing RNPs undergo 

synergistic temperature-dependent changes20,21 that are then important  for assembly of 

additional r-proteins.  

The secondary binding proteins which depend on the initial assembly of S15 are 

S18 and S6.47 However S18 and S6 (along with S15) are also classified as early binders.17 

The enhancements produced by the binding of S15 (G664, G674, C719) that become 

protected by binding of S6 and S1825 are not temperature dependent (Figure 3). 

Consequently this would favor the rapid binding of the secondary proteins, even at low 

temperature as would be consistent with their kinetic classification. Again, these events 

may then allow assembly in an ordered manner. 

Binding of S7 prepares 16S rRNA for the binding of other r-proteins like the 

secondary binding r-protein S19.15 The regions around 950 and 980 reveal temperature –

dependent changes (Figure 3c), mainly enhancements, in the S7/16S rRNA RNP, 

although there are no crystal contacts between 16S rRNA and S7 in these regions in the 

30S subunit.3,29 The temperature-dependent enhancements are sites that can be protected 

by binding of S19.26 Thus the temperature-dependent conformational rearrangement of 

S7/16S rRNA complex likely facilitates full accommodation of S19. This proposal is 

consistent with the classification of S19 as a mid-binding protein.17 
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Temperature-dependent conformational rearrangements may be a common device 

in orchestrating an orderly sequential assembly in complex RNPs that involve large 

RNAs. Binding of the r-proteins facilitates changes in 16S rRNA conformation at the 

RNA-protein interface, but it was also shown that it affects the conformation of 16S 

rRNA at some distance from the site of interaction. These long distance effects can 

organize the binding site of other r-proteins that assemble in a sequential manner, 

modulate subunit interdomain interactions or bring the 16S rRNA into a correct 

functional conformation. For some of these long distance effects to be realized, the 

appropriate changes in the conformation of 16S rRNA require both the presence of an r-

protein and elevated temperature. Thus the approach may be applicable to the study of 

large RNP assembly. 

The complexity of the spectrum of interactions between RNA and proteins is very 

well illustrated in our model system. Even in the same RNP, differential folding of 

segments of the RNA molecule with a single protein can be observed. Very simple single 

phase interactions are observed, in general, with RNA binding proteins that are very 

small, and well structured. In other instances, a more regulated process appears to be 

utilized. Alteration of temperature can be used to reveal modulation of folding of RNA 

within these RNP. Changes in RNA structure within the RNP can be subtle, such as fine 

adjustments, or quite substantial. Our simple study suggests that the r-proteins can 

interact with 16S rRNA differentially and that at least two types of induced fit are 

observed: when only RNA is changing its conformation after binding and when both the 

RNA and the protein are changing conformation at binding.  
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Table 1. 16S rRNA nucleotides with changed reactivity as a result of r-protein binding. 

The type of change is indicated and if the change is temperature dependent or not.  

S20 S17 S8 S15 S7  
Nucleoti

de 
Type  T0C   

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
5` 

domain 
          

A182 P No         
A189 E No         
A190 E No         
C194 P No         
A246 P No P No       
A250 P No P No       
G251 P No P No       
A262 P No P No       
A263 P No P No       
C264 P No P No       
G265 P No P No       
G266 P No P No       
A274 P No P No       
A279 P No P No       
C280 P No P No       
G281 P No P No       
A325 E No         
A327 P No         
A329 P No         
G331 P No         
G332 P No         
A338 E No         
C352 P No         
A353 P No         
G524     E Yes E Yes   
A535     E Yes E Yes   

Central 
domain 

          

A573     P Yes     
A574     P Yes     
G575     P Yes     
A583     P No     
A640     P No     
A642     P No     
G664       E No   
A665       E Yes   
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S20 S17 S8 S15 S7  
Nucleoti

de 
Type T0C   

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
A673     E No E No   
G674     E Yes E No   
A718     E Yes E Yes   
G724       P Yes   
G727       P Yes   
A728     E* Yes E* Yes   
G730       P No   
C732     E* Yes     
G741       P No   
G742       E* No   
C754     P* No     
G812     P No     
C817     E No     
G858     P Yes     
G859     P Yes     
A860     P Yes     
G861     P Yes     
A865     P Yes     

3`major 
domain 

          

A935         P Yes 
C936         P No 
A937         P Yes 
A938         P Yes 
G939         P Yes 
C940         P No 
G944         P Yes 
G945         P Yes 
A949         P No 
G951         P Yes 
G953         E * Yes 
G954         E Yes 
A977         E Yes 
A978         E Yes 
C979         E Yes 
C980         E Yes 
A983         P No 
A1236         P* Yes 
C1237         P* Yes 
A1238         P Yes 
A1239         P* Yes 
A1248         P Yes 
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S20 S17 S8 S15 S7  
Nucleoti

de 
Type T0C   

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
C1249         P Yes 
A1250         P Yes 
A1251         P Yes 
A1252         P Yes 
A1256         P No 
A1287         P Yes 
A1288         P Yes 
A1289         P Yes 
G1290         P No 
G1297         E No 
G1300         P Yes 
C1302         P Yes 
G1304         P Yes 
G1305         P Yes 
C1314         P* Yes 
G1316         P Yes 
C1317         E* Yes 
A1318         E* Yes 
A1319         E* Yes 
C1320         E* Yes 
C1322         P Yes 
G1331         P Yes 
A1332         P Yes 
A1333         P Yes 
G1334         P Yes 
G1337         E * Yes 
G1338         E Yes 
A1339         P No 
A1346         P No 
A1349         P Yes 
A1360         P Yes 
G1361         P Yes 
A1362         P Yes 
A1363         P Yes 
G1365         P Yes 
A1374         P No 
A1377         P No 
C1382         P No 

3’ minor 
domain 

          

A1433 P No         
A1434 P No         
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S20 S17 S8 S15 S7  
Nucleoti

de 
Type T0C   

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
Type T0C 

dep. 
A1446 P No         
A1447 P No         
C1469 E No         

 
E –enhancement, P-protection.  

* -indicates that no change in reactivity was reported previously at that nucleotide
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Figure 1. (a) Modified in vitro 30S subunit assembly map. The 16S rRNA is represented 

by a rectangle in a 5’ to 3’ direction. The arrows indicate the co-dependencies for the 

assembly of the r-proteins. The relative size of the arrow indicates the relative strength of 

the assembly dependency between components. The r-proteins shown in the white region 

are primary r-proteins. The r-proteins shown in white in the light gray and dark gray box 

indicate secondary, and tertiary binding r-proteins, respectively. S6 and S18 are enclosed 

in a box to indicate that they bind as a heterodimer. (b) Crystal structure of the 16S rRNA 

from the E. coli 30S subunit with all the primary proteins.3 The 16S rRNA is shown in 

gray, and the r-proteins are S4 green, S7 red, S8 magenta, S15 bright yellow, S17 dark 

purple and S20 light blue. All the Figures containing 3-D structures were prepared using 

Pymol,48 and the pdb file 2AW7. 
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(b) 



www.manaraa.com

 

 

 
134 

Figure 2. Primer extension analysis of the r-protein/16S rRNA complexes. Individual 

gels of the minimal complexes modified by DMS or kethoxal are shown. A and G (lanes 

1 and 2) are dideoxy sequencing lanes, K (lane 3): unmodified 16S rRNA. All the other 

lanes are treated with the probe indicated below. The other lanes 4-8 are: modified 16S 

rRNA kept at 0oC (lane 4) at 42oC (lane 5), Sx/16S rRNA formed at 0oC (lane 6), at 42oC 

(lane 7) and the shifted complex (lane 8). Compare lanes 4 and 6 for the complexes 

formed at 0oC, lanes 5 and 7 for the complexes formed at 42 oC, or lanes 6 and 7 for the 

differences between the two complexes. The primers used for the extension are indicated 

below. S20/16S rRNA: (a) DMS-323, (b) kethoxal-323, (c) DMS-480, (d) DMS-1508; 

S17/16S rRNA: (e) DMS -323; (f) - kethoxal, 323; S15/16S rRNA: (g) DMS - 795 , (h) 

kethoxal – 795; S8/16S rRNA: (i) DMS-683, (j) kethoxal-683, (k) DMS-795, (l) DMS-

939, (m) kethoxal -939 , (n) DMS – 939; S7/16S rRNA: (o) DMS-1046, (p) kethoxal -

1046, (q) DMS-1391, (r) DMS -1491, (s) kethoxal -1491. The symbol x indicates no 

temperature dependence and the symbol ∆ indicates temperature dependence. 
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(a) 

(b) 
(c) 

(d) 

(e) (f) 
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(g) 

(h) 

(i) 

(j) 
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(k) 

(l) (m) 

(n) 

(o) 

(p) 
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Figure 3. Nucleotides with altered reactivity as a result of binding of an r-protein to 16S 

rRNA, for both kethoxal and DMS probing represented on the secondary structure of 16S 

rRNA.49 Circles denote the sites of protections, while squares denote enhancement sites, 

and the size represents the intensity of the change. The 16S rRNA is shown in gray, 

changes attributed to: S4, green; S7, red; S8, magenta; S15 bright yellow; S17, dark 

purple, and S20, light blue. Nucleotides enhanced or protected by more than one protein 

are shown as concentric rings or squares. (a) Changes in modification patterns shown on 

the secondary structure of 16S rRNA for the interaction at 0oC. (b) Changes in 

modification patterns shown on the secondary structure of 16S rRNA for the interaction 

at 42oC. (c) Difference in the nucleotides with altered reactivity between the complexes 

formed at 42oC and 0oC. 
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Figure 4. Details of footprints for r-proteins S15 and S8. The 16S rRNA is shown in 

gray, S15 and S8 are shown in rainbow, from blue (N-terminus) to red (C-terminus). 

Footprints which are not temperature dependent are shown in blue, footprints that appear 

at 0oC and continue to develop in intensity at 42oC are shown in purple, and footprints 

that appear only at 42oC are shown in red. (a) 16S rRNA r-protein and S15 from the 

crystal structure of E. coli  30S subunit; (b) S15-dependent protections; (c) S15-

dependent enhancements; (d) 16S rRNA r-protein and S8 from the crystal structure of E. 

coli  30S subunit; (e)S8-dependent protections; (f) S8-dependent enhancements.  
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(a) 
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(d) 

(e) 
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Figure 5. Details of footprints for r-proteins S4 and S7. The 16S rRNA is shown in gray, 

S15 and S8 are shown in rainbow, from blue (N-terminus) to red (C-terminus). Coloring 

of footprints as described in Figure 4. (a) 16S rRNA r-protein and S4 from the crystal 

structure of E. coli  30S subunit; (b) S4-dependent protections; (c) S4-dependent 

enhancements; (d) 16S rRNA r-protein and S7 from the crystal structure of E. coli  30S 

subunit; (e) S7-dependent protections; (f) S7-dependent enhancements.  
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Figure 6. The temperature dependent footprints for each primary r-protein represented on 

the crystal structure of 16S rRNA from the E. coli 30S subunit, as spheres. The proteins 

are not shown for clarity. The size of the spheres is indicative of the intensity of the 

change. The 16s rRNA is shown in gray. The temperature dependent footprints (spheres) 

correspond to: S4, green; S7, red; S8, purple; S15, bright yellow; S4 and S15, magenta; 

S8 and S15 orange; S4, S8 and S15, blue. Different views of 16S rRNA from 30S subunit 

are shown: (a) solvent view and (b) interface view. 
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Chapter VII. Probing the assembly of 30S subunit with the r-

protein S20 

Abstract 

 The ribosomal protein (r-protein) S20 interacts directly and independently with 

the 5’ domain and the 3’ minor domain of 16S ribosomal RNA (rRNA) in minimal 

particles and the fully assembled 30S subunit. In this study Fe(II)-derivatized S20 protein 

is used as a probe for the assembly of the 30S subunit. Directed hydroxyl radical probing 

from four unique positions on S20 reveals the architecture of 16S rRNA around the 

probe. An analysis of the cleavage patterns in the minimal complexes and the fully 

assembled 30S subunit shows intriguing similarities and differences. For a better 

understanding of the events taking place during assembly around the probe, Fe(II)-S20, 

ribonucleoprotein particles (RNPs) of different complexities are probed. The comparison 

of the cleavage patterns in the different RNPs shows that even in the minimal particles 

the environment of the probe is very similar to the one in the 30S subunit, but addition of 

other r-proteins augments the organization of 16S rRNA.  

Introduction 

The process by which 16S ribosomal RNA (rRNA) folds into three-dimensional 

structures within functional 30S ribosomal subunits has drawn much interest, but there 

are still many unanswered questions. The crystal structure of the ribosome from 

Escherichia coli (E. coli) was determined recently,1 and structures of the ribosome and 

the independent subunits are available from other organisms2-5 too. The knowledge of the 

structure of some of the ribosomal proteins6-10 (r-proteins) and fragments of the rRNA11 
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also available in free form make possible some inferences on the assembly process. These 

advances are very important but they give us information mostly about the static 

complexes without revealing the dynamics of RNA and r-proteins during assembly. The 

next challenge in understanding 30S subunit assembly is to identify changes the changes 

that lead to the formation of a mature, functional 30S subunit. The complex composition 

of the 30S ribosomal subunit, 21 r-proteins (S1-S21) and 16S rRNA,12 makes this 

problem non-trivial and only by using a variety of methods will the processes involved in 

ribosome biogenesis be understood. 

16S rRNA has 1542 nucleotides, and studies revealed four distinct secondary 

structural domains, the 5’, central, 3’ major and 3’ minor domains13,14 (Figure 1a). The 

four domains of the 16S rRNA form, in the presence of the appropriate r-proteins form  

distinct parts of the 30S subunit, that can assemble independently, and they are the body 

(5’ domain), the platform (central domain), the head (3’ major domain) and the 

penultimate stem (mainly the 3’ minor domain).1,13 The r-proteins are the driving force 

behind the assembly of the 30S subunit. Their binding shapes and defines the structure of 

the 16S rRNA in the functional small subunit. The assembly map15,16 (Figure 1b) is a 

guide in the study of the assembly of the 30S subunit. In vitro experiments that used the 

self-assembly capacity of the 30S subunit, in which single r-proteins where omitted or 

added revealed the requirements for and the order of r-protein binding to 16S 

rRNA.15,17,18 The small subunit r-proteins are classified based on the requirements for 

their assembly in three categories: primary, secondary and tertiary15,17,18 (Figure 1b). The 

primary binding r-proteins bind independently and specifically to 16S rRNA, in the 

absence of any other r-proteins. The secondary and tertiary binding r-proteins necessitate 
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the prior assembly of at least one primary r-protein, and of both primary and secondary 

binding r-proteins, respectively.  

The 30S subunit can assemble in vitro from 16S rRNA and a mixture of r-

proteins,19 which can be extracted from the natural 30S subunits, as a mixture,12 separated 

individually or from recombinant r-proteins.20 The recombinant system for in vitro 

reconstitution makes possible the construction of minimal ribonucleoprotein particles 

(RNPs) that represent different stages of assembly, in which r-proteins that are modified 

or derivatized can be incorporated. 

One of the methods used extensively, but mainly in static complexes, to study the 

nucleic acid environment of proteins, or even nucleic acids is directed hydroxyl radical 

probing.21,22 Proteins are derivatized with Fe(II)BABE through a single cysteine,21 and 

RNA through phosphorothioate.23 In directed hydroxyl radical probing, the radicals are 

generated only around the tethered Fe(II) by Fenton reaction, cleaving the RNA 

backbone21. In the ribosome and ribosomal subunits it helped in the characterization of 

the rRNA surroundings of components such as r-proteins21,24,25 or ligands like transfer 

RNA,23,26,27 prior to structural advances. For example, the location of r-protein S20 in 

30S subunit was analyzed, using derivatized S20 as a probe, and helped clarify the 

controversy of its location21. Recently, directed hydroxyl probing was used to explore the 

dynamics of the 16S rRNA surrounding the r-protein S15.28,29 Derivatized S15 was used 

to identify conformational changes in the 16S rRNA in RNPs of different 

complexities,28,29 thus elucidating roles of the r-proteins in the assembly process. Fe(II)-

tethered S15 protein was incorporated in different complexes and the changes in the 

cleavage patterns were used to asses the changes in the rRNA structure. The minimal 
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complex (Fe(II)-S15/16S rRNA) showed the least complex cleavage pattern, and at the 

addition of other r-proteins, more cleavage sites were observed.29 The difference in the 

cleavage pattern between the complexes shed light on the rearrangement of the rRNA 

elements in the presence of a certain r-protein.28 This approach made possible a better 

understanding of the assembly of the 30S subunit, by detailing the role played by r-

proteins and the conformational rearrangements that occur in nucleic acid-protein 

complexes during assembly.  

Some of the 30S subunit r-proteins have more than one 16S rRNA binding site.4 It 

has been suggested that the interaction between r-proteins and 16S rRNA occurs in 

discrete stages.30-32 Early in 30S subunit assembly the protein could interact with a 

specific 16S rRNA element and later interaction with a second site of 16S rRNA could 

occur31. One of the ribosomal proteins that interacts with two different domains of 16S 

rRNA is a primary binding protein S204,33(Figure 2a and b). The interaction of primary r-

protein S20 with 16S rRNA has been studied extensively before the structure of the 30S 

subunit was determined. Footprinting experiments with base-specific chemical probes 

and solution hydroxyl radical probing of the minimal complex (S20/16S rRNA) were 

used to reveal the binding site to the 16S rRNA.34 The crystal structure of the 30S subunit 

confirmed that S20 binds several helices from the 5’domain and the 3’ minor domain of 

16S rRNA.1 Its structure was not determined in the free form, but in the assembled 30S 

subunit, S20 is a three-helix bundle located at the bottom of the small subunit in the body 

(5’ domain), and it also contacts the penultimate stem (helix 44)1 (Figure 2a and b). 

Based on the model of 5’ to 3’ assembly32 and the positioning of the penultimate stem 

across the body in the small subunit,1 it is easy to speculate that S20 may interact with 
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these domains differently along the assembly, and directed hydroxyl radical probing may 

be a suitable method to dissect these interactions. 

 The presence of cysteine residues is required for directed hydroxyl radical 

probing, but the wild-type r-protein S20 does not contain any cysteine residues. Since 

directed hydroxyl radical probing from S20 in the 30S subunit was effected earlier,33 the 

positions at which individual cysteines could be introduced were already available.33 

Non-conserved residues chosen using an amino acid sequence alignment of S20 proteins 

from five organisms, which had a high probability to be found on the surface of the 

protein were replaced by cysteines. Four modified proteins that gave base specific 

footprints similar to those of the wild type S20 and thus retained function, were used for 

directed hydroxyl radical probing.33 At that time, the crystal structure of S20 was not 

known, and the placement of cysteines on the tertiary structure of S20 could not be 

determined, but they gave different cleavage patterns, so it was presumed that they are 

fairly well dispersed along S20. In the crystal structure of S20 from the 30S subunit 

(Figure 2e, f) one of the cysteines is close to the N-terminus of S20, at one end of S20 

(residue 13), another one is at the opposite end of S20 (residue 47), while the remaining 

two (residues 22 and 55) are in the middle of S20, very close in space, but on different 

helices (Figure 2e, f). In the experiments we have used the four aforementioned 

substituted S20 proteins: C13S20, C22S20, C47S20 and C55S20.  

Initially, the minimal Fe(II)–S20 /16S rRNA complexes are analyzed and their 

cleavage patterns are compared to the ones in the 30S subunits,33 both from literature and 

reproduced. The cleavage patterns in the minimal complexes and the fully assembled 30S 

subunits are very similar, which is very different from what was observed for r-protein 
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S15.28,29 Traditionally, particles with the same composition but containing one r-protein 

derivatized at individual distinct positions were probed. This approach is useful if there is 

not a lot of information on the structure of the complex formed between the r-protein and 

the 30S subunit, since it will provide a lot of information on the surroundings of the 

probe. In our case, because the cleavage patterns that we obtained for the starting 

complex (Fe(II)–S20 /16S rRNA) were very similar to the ones observed for the final 

product of assembly (30S subunit), we thought that it would be more informative to 

probe at the same time RNPs of different complexities that contain the same derivatized 

S20 protein. This approach should confirm the similarities and reveal subtle differences. 

In this study our results for the probing of minimal complexes are presented, followed by 

the results for the probing of the 30S subunit, and to obtain a more detailed picture of the 

dynamics of the surroundings of S20 during assembly, different RNPs containing 

derivatized S20 protein, in particular C13S20 and C22S20, were probed in the same time 

and the results are analyzed.   

Materials and methods 

Mutagenesis, expression and purification of S20. The gene-encoding ribosomal 

protein S20 was cloned from E. coli MRE600 genomic DNA into pET24b vector 

(Novagen).20 Site-directed mutagenesis was used to introduce cysteine residues at three 

non-conserved positions (Ser 13, Ser 23, and Lys 49). The mutation was confirmed by 

sequence analysis. The mutated S20 proteins were expressed individually in E.coli 

pRBL21 and purified as described for wild-type protein.20 The fourth modified S20 (Ile 

55) was available. 
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Derivatization of S20 proteins. The fluorescent reagent 7-diethylamino-3-((4′-

(iodoacetyl)amino)phenyl)-4-methylcoumarin (DCIA; Molecular Probes) was used to test 

the accessibility of each introduced cysteine residue for derivatization. Non-specific 

derivatization at positions other than the cysteine residues was assessed by using the 

wild-type S20, in parallel with the cysteine-containing S20 mutant proteins. 

Derivatization of cysteine-containing S20 proteins by DCIA and Fe(II)–BABE(1-(p-

bromoacetamidobenzyl) ethylenediaminetetraacetate) was done as described.21  

Formation of Fe(II)–S20 containing RNPs. The natural 16S rRNA, isolated 

from natural 30S subunits as described previously,35 was pre-incubated at 42°C for 15 

minutes in buffer A (20 mM K+-Hepes (pH 7.6), 20 mM MgCl2). The Fe(II)–S20 

containing RNPs were formed by mixing the 16S rRNA (40 pmoles) with the Fe(II)-S20 

(200 pmoles), and the other necessary r-proteins (240 pmoles each). The KCl 

concentration was adjusted to 330 mM in each of the reactions in a final volume of 100 

µl, and they were incubated at 42°C for 60 minutes. The reaction mixtures were kept on 

ice for 10 minutes before purification on spin columns and directed probing (see below). 

Purification of RNPs from Fe(II)–S20. The complexes containing Fe(II)–S20 

proteins were purified to remove any unbound protein by using spin columns, prior to 

directed hydroxyl radical probing. This was done as described by Culver and Noller,21 the 

only difference being the centrifugation speed, which in our case was 6. The purified 

RNPs were kept on ice for 10 minutes before the hydroxyl radical probing.  

The 30S subunits were also purified using centrifugal filter devices Microcon 

YM-50, at a speed of 6.4 rpm. The reaction mixture volume was reduced to half (50 µL), 

followed by three washes with 400 µL of buffer A. 
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Directed hydroxyl radical probing. Directed hydroxyl radical probing of 16S 

rRNA from Fe(II)–S20, in the different RNPs and the subsequent primer extension 

analysis was done as described by Culver and Noller.21 

Results 

 Expresion, purification and derivatization of cysteine containing S20. The 

cysteine containing S20 proteins were expressed and purified as described,33 and the 

availability of the cysteine residue for derivatization was assessed using the fluorescent 

label 7-diethylamino-3-((4′-(iodoacetyl)amino)phenyl)-4-methylcoumarin21 (DCIA) (data 

not shown). Derivatization with Fe(II)-BABE (1-(p-bromoacetamidobenzyl) 

ethylenediaminetetraacetate) and purification of the r-protein was performed using 

published methods.21 The dervatization with Fe(II)-BABE was also confirmed and 

assessed by the fluorescence assay (data not shown). 

Purification and probing of RNPs containing Fe(II) derivatized S20 protein. 

RNPs containing the derivatized S20 protein are formed, and purified by size exclusion 

chromatography. It is very important to remove any free modified protein from the 

reaction mixture, since its presence might result in production of spurious hydroxyl 

radicals, and subsequent nonspecific cleavage. Traditionally, 30S subunits are purified 

from unbound material by ultracentrifugation through sucrose gradients. The 30S 

subunits used for probing were purified through sucrose gradients or with centrifugal 

filter device Microcon YM-50.  Base-specific footprinting with DMS shows that the 16S 

rRNA in 30S subunits containing Fe(II) tethered S20 purified using the centrifugal filter 

device Microcon YM-50, are folded similarly to 16S rRNA in the unpurified 30S 

subunits (data not shown).  
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After purification, hydroxyl radicals are generated. Hydroxyl radicals cleave the 

RNA backbone proximal to the Fe(II)-modified sites and cleavage sites are identified by 

primer extension. The results are mapped on the secondary structure of 16S rRNA and on 

the tertiary structure of 16S rRNA from the 30S subunit of the E. coli ribosome.   

Directed hydroxyl radical probing of the minimal complexes Fe(II)–S20 /16S 

rRNA. The four minimal complexes containing Fe(II) derivatized S20 r-proteins have 

different cleavage patterns (Figure 3, Table 1), but the cleavage sites for each one of them 

are localized in the 5’ domain and helix 44 of the 16S rRNA (Figure 4b-e). 

In the RNP containing C13S20, cleavage sites from the hydroxyl radicals are 

present in helices 5, 6, 8, 13, 14 (5’ domain) and also at two discrete sites in helix 44 

(Figure 4b). The most extensive cleavage by the radicals generated from Fe(II)-C13S20, 

in the minimal complex, is observed in helix 8 and at the junction formed by helices 5, 6 

and 14.  

For the minimal complex containing C22S20, the cleavage is the most 

pronounced in the 5’ domain, when compared to the other minimal RNPs (Figure 3a, 

Figure 4). Helices 6, 8, 9, 11, 13 and 14, from the 5’ domain, all show cleavage in 

different degrees and weak cleavage, at two different sites is also observed in helix 44 

(Figure 4c). In the minimal complex containing Fe(II)C22S20, helices 8 and 13 showed 

the most extensive cleavage.  

 When C47S20 is used as a probe in the minimal complex, the cleavage pattern 

was quite different from all the other three derivatized proteins (Figure 3, Figure 4), 

which is consistent with the positioning of residue 47 in the r-protein S20 (Figure 2e, f). 

In the minimal complex C47S20/16S rRNA, helices 8, 9, 11, and loop 360 are cleaved in 
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the 5’ domain, while in helix 44 there are three discrete cleavage sites (Figure 4d). Some 

nucleotides around 1440 are weakly targeted, while stronger cleavage takes place in the 

regions 1450 and 1460 (Figure 3c, Figure 4d). The cleavage observed in helix 44 from 

the hydroxyl radicals generated by Fe(II) tethered C47S20 is the strongest from all the 

minimal complexes (Figure 3d). 

The cleavage pattern observed in the complex containing C55S20 as a probe is 

very similar to the one observed in the C22S20/16S rRNA RNP, but with lower intensity 

(Figure 3, Figure 4c, e). As it was mentioned earlier, residues 22 and 55 are located on 

two different helices of S20, but they are very close in space (Figure 2e, f). Especially in 

helices 8 and 13 the weaker cleavage is obvious, and some of the nucleotides cleaved 

from Fe(II)-C22S20 are not cleaved from C55S20 (Figure 4c,e). Very weak cleavage 

form Fe(II)-C55S20 is observed in helix 44 (Figure 3c, Figure 4e), and probably that is 

justified since on the tridimensional structure of 16S rRNA with S20, residue 55 seems to 

be more buried than residue 22. 

Directed hydroxyl radical probing of 30S containing Fe(II)–S20. The cleavage 

patterns for each of the 30S subunits containing one of the Fe(II)-S20 protein are 

different, but when compared to the corresponding minimal complexes, it is obvious that 

they are very similar (Table 1, Figure 3, Figure 5). Also the cleavage patterns observed in 

the 30S subunits when S20 is used as a probe are very similar to the ones previously 

published, with a few exceptions: the extent and intensity of cleavage are higher in the 

experiments performed in this study, which may arise from a better quality of the starting 

materials, like commercially available BABE or fresh hydrogen peroxide; in one of the 

gels previously published33 two of the samples were swapped (C13S20-30S and C22S20-
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30S in the primer extension with primer 232); and it seems that in the original 

experiments the extent of derivatization of C47S20 was lower than the one obtained in 

this study, which led to less cleavage, which again can be due to the quality of BABE 

used. At the time when probing was performed in the 30S subunit using r-protein S20 as 

a probe, the fluorescence assay was not yet used to assess the availability of cysteine or 

the derivatization of  S20.33 These conclusions arise after extensive control experiments, 

and they were also consistent with the mapping of the data on the three dimensional 

structure of 16S rRNA from the 30S subunit, which is now available (Figure 5). 

The majority of differences observed between the cleavage patterns in the 30S 

subunits and the corresponding minimal complexes are usually in intensity, and not in the 

position of the cleavage sites. In a few regions it seems that there are some subtle 

differences, like new cleavage sites appear or even more interestingly, disappear (Table 

1, Figure 3, Figure 5). The question that comes up is are these subtle differences real or 

they are inherent small differences observed because the probing of distinct particles was 

performed at different times.  

Directed hydroxyl probing of RNPs of different complexities containing 

Fe(II)-C13S20. To address this question, a different approach was taken. RNPs of 

increasing complexity were probed and the same derivatized S20 was used as a probe in 

each one of them. Small differences and similarities are made more credible by this 

approach. The results are presented for two of the derivatized S20 protein.   

To have up most confidence in subtle differences, in the experiments in which 

RNPs of difference complexities are probed with Fe(II)-S20 protein, all the RNPs, 

including 30S subunits, are purified by size exclusion. Base-specific footprinting with 
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DMS shows that the 30S subunits containing Fe(II) tethered S20 purified by size-

exclusion, are the same as the non-purified 30S subunits (data not shown).  

Six different RNPs of different composition are formed and probed with the same 

derivatized S20, in the same experiment for a better comparison. The first complex is 

S20/16S rRNA, which is mainly used as a control, since it lacks cysteine, Fe(II) should 

not be present and hydroxyl radicals should not be generated. The other complexes are 

Fe(II)-C13S20/16S rRNA, Fe(II)-C13S20/1o/16S rRNA (1o mixture contains S4, S7, S8, 

S15 and S17), Fe(II)-C13S20/1o/S12+S16+S5/16S rRNA, Fe(II)-C13S20/5’/16S rRNA  

(5’ contains S4, S8, S17, S16, S12, S5) and Fe(II)-C13S20-30S. Since this was an 

exploratory experiment, more complex particles were chosen to be able to see changes. 

The minimal RNP is the starting point for the comparison; it is the least complex particle 

that can be formed. The next RNP contains all the primary r-proteins that interact directly 

with 16S rRNA and start organizing their corresponding domains, indicated in the 

appropriate color on the assembly map16, 17 ( Figure 1b, Figure 6). The primary r-proteins 

S4 and S17 bind directly to the 5’ domain (shown in red in Figure 1), S8 which binds to 

the central domain (shown in green in Figure 1) will promote the binding of a secondary 

binding protein that binds to 5’ domain, S15 binds to the central domain (red) and S7 

initiates the assembly of the 3’ major domain36 (shown in blue) (Figure 1). The RNP 

containing all the primary r-proteins and the three secondary binding proteins will show 

the importance of the secondary binding r-proteins that bind in the 5’ domain (shown in 

red in Figure 1b), by comparison with the RNP containing just the primary binding r-

proteins. The RNP containing the 5’ domain proteins (Figure 1b, Figure 6) will show if 

organizing the 5’ domain is enough to obtain a cleavage pattern similar to the one in the 
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30S subunit. Also, it will allow inferring if S15 and S7 are important for the organization 

of 16S rRNA surrounding S20, by contrast with the previous particles. Finally, the 30S 

subunit is the product of the assembly and another important evaluation point. This 

approach allows direct comparison of the cleavage patterns from the same probe in 

different RNPs and it is possible to deconvolute which proteins produce changes in the 

environment of the probe. 

The cleavage patterns are quite similar for all the RNPs containing C13S20 

mentioned above (Figure 7), with a few notable exceptions. Most importantly, the 

cleavage intensity is lower for the minimal complex containing Fe(II)-C13S20 (Figure 7) 

than in all the other RNPs, especially in the 5’ domain of 16S rRNA. There are a few 

cleavage sites in which the change in intensity is more pronounced as more proteins are 

added, than others but we will not focus on the cleavage sites that become more intense, 

since that is a general phenomenon for this probe, but on three sites where the intensity 

varies between the RNPs. R-protein dependent variation allow determination of roles for 

specific r-proteins, and implicitly of r-proteins that are important in folding distinct 

regions of 16S rRNA. 

The most intriguing cleavage region from Fe(II)-C13S20  is the one around 

nucleotide 80 (Figure 6a), in helix 6 of 16S rRNA where for the RNP containing all 

primary proteins and the one containing all the primary and the secondary S16, S5 and 

S12 r-proteins the cleavage becomes more pronounced than in the minimal complex, but 

for the RNP containing the 5’ domain mix there is no increase in the cleavage intensity 

compared to the minimal complex (Figure 6a). In the 30S subunit the cleavage is the 
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most intense, from all the RNPs probed. From these experiments it can be concluded that 

the change is brought by the presence of the primary binding r-proteins S7 and S15.  

Interestingly, there are two cleavage sites where the intensity initially increases as 

all the other primary r-proteins are added and decreases in the more complex RNPs 

(Figure 6a, c) and these are the regions around nucleotides 60 and 350. While dispersed 

in the primary sequence, in the secondary structure of the 16S rRNA these nucleotides 

are located very close to each other, at a helical junction formed by helices 5, 6, 13 and 

14. Thus they are probably influenced by assembly of the same r-protein(s). 

Directed hydroxyl probing of RNPs of different complexities containing 

Fe(II)-C22S20. The same particles are also investigated using C22S20 as a probe. In this 

case, the cleavage patterns and intensities obtained for the different RNPs are very similar 

in the 5’ domain (Figure 8a-c), with one exception. Interestingly, the exception is the 

cleavage region close to nucleotide 80 (Figure 8a), in helix 6, and the same behavior was 

observed when C13S20 is used as a probe (see above). A stronger cleavage than in the 

minimal particle is observed at the addition of the primary proteins or the primary and 

S16, S5 and S12, but no increase when only the 5’ domain proteins are added, while in 

the 30S subunit the cleavage is the most pronounced. Much more intriguing are the 

cleavage sites observed in helix 44 from Fe(II)-C22S20 (Figure 8d). Three discrete 

cleavage sites are observed in the minimal complex and the 30S subunit in regions 1430, 

1450 and 1460. The intensity is quite lower in the minimal complex compared to the fully 

assembled 30S subunit, and the particles of intermediate complexity show varied 

intensities. These results are suggesting that helix 44 interacts differently with S20 during 
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the assembly, compared to the interaction from the minimal complex and the 30S 

subunit.  

Discussion 

The cleavage patterns observed for the minimal RNPs containing Fe(II)-tethered 

to S20 are very similar to the ones observed in the fully assembled 30S subunit. The 

placement of the four different residues on S20 makes possible a thorough examination 

of the surroundings of this r-protein. Probing with hydroxyl radicals generated from 

Fe(II)-tethered through residues 13 and 47 are very different from each other and the 

other derivatized S20 proteins.  The cleavage from the S20 derivatized at positions 22 

and 55 are quite similar (Figure 4c, e), as expected from their relative placement in the r-

protein S20(Figure 2e, f). The results of the directed hydroxyl probing in the minimal 

complexes correlate well with the relative positions of the derivatized residues in S20 and 

show that each minimal complex has its own cleavage pattern (Figure 4). The 

representation of the cleavage sites on the 16S rRNA from the E. coli 30S subunit1 

illustrates how much information can be obtained by directed hydroxyl radical 

footprinting, and confirms the validity of the experimental data (Figure 5 a, b, e, f, i, j, m, 

n). The cleavage sites and their intensity correlate very well with the placement of the 

respective probe in the structure of S20 and of the 30S subunit (Figure 5 a, b, e, f, i, j, m, 

n). For each of the Fe(II)-S20 protein the intensity of cleavage is highest around the 

Fe(II) ion and it decreases as the distance increases, due to the limited range of the 

hydroxyl radicals. Even in then minimal complexes containing Fe(II) derivatized S20, 

helix 44 is positioned very similarly to its position in the 30S subunit.  
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The comparison with the cleavage pattern in the corresponding 30S subunits 

demonstrate that both in the minimal complex and the final product of the assembly, the 

surroundings of the probe r-protein S20 are fairly similar (Figure 5). As it was shown by 

base-specific footprinting and solution hydroxyl radical probing S20 interacts with both 

the 5’ domain and helix 44 of the 3’ minor domain of 16S rRNA in both the minimal 

complex and the fully assembled 30S subunit. Beside that, it was also shown that even in 

the absence of any r-proteins the 5’ domain has an architecture that resembles closely the 

architecture of the 30S subunit.37 

Fe(II)-C13S20 as a probe for the assembly of the 30S subunit - general 

trends. The cleavage patterns in the minimal complex and the 30S subunit when C13S20 

is used as a probe are similar, yet distinct. This suggests that even in the presence of only 

r-protein S20 both the 5’ domain and helix 44 are sampling 30S-like positions relative to 

S20 in the C13S20/16S rRNA complex. At the assembly of other r-proteins adjustments 

are taking place in the conformation of 16S rRNA surrounding S20 protein. Especially 

notable is that in the minimal complex the intensity of cleavage is lower compared to all 

other RNPs studied, at all cleavage sites, with one exception (region 80).  

Residue 13 is located in the N-terminal helix of S20, the first and longest helix 

from the three that compose S20 (Figure 2e and f). The two other helices that are present 

in S20 are of very similar size, while the N-terminus helix is longer. Residue 13 is located 

in a region of the N-terminal helix that is not stacked with the other helices. This region 

can probably move more than other regions of S20, and it seems that in the minimal 

complex is not as close to the 16S rRNA as in other more complex RNPs or it is more 

dynamic, as the lower intensity of the cleavage is showing. Probably a combination of the 
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dynamics of the N-terminal helix of the r-protein S20 and the 16S rRNA surrounding it, 

account for the lower intensity of cleavage in the minimal complex. When more r-

proteins are added (all the other primary proteins for example) the 16S rRNA around S20 

adopts an architecture more similar to the one in the 30S subunit. The decrease in 

intensity could be again attributed to the protection of 16S rRNA by r-proteins, but all of 

the r-proteins are quite far away from S20.   

The differences observed between the different RNPs explored make it possible to 

identify some of the r-proteins responsible for the changes of 16S rRNA conformation 

around r-protein S20. Interestingly, the differences between the minimal complex and the 

other complexes are more intense in the 5’ domain than in the 3’ minor domain (helix 

44).  

Role of the primary r-proteins in organizing the 16S rRNA surrounding of 

Fe(II)-C13S20. The addition of all the other primary r-proteins organizes the 16S rRNA 

surrounding the C13S20 probe and makes the cleavage pattern more similar to the one in 

the 30S subunit than the one observed in the minimal complex (Figure 7a-c). From our 

results it can be inferred that probably even only in the presence of the other primary r-

proteins that bind the 5’ domain (S4 and S17), the cleavage pattern is going to be very 

similar to the one in the fully assembled 30S subunit.  

Interestingly, even the presence of r-proteins S7 and S15 makes a difference in the 

organization of the surroundings of S20, though they bind different domains of 16S 

rRNA. In the structure of the 30S subunit, S20 is located at the bottom of the body, S7 is 

located in the head and S15 is located somewhere in the middle, in the platform (Figure 

6). The intensity of cleavage in the region of nucleotide 80 (Figure 7a) is similar to the 
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one in the 30S subunit if the RNP contains the r-proteins S7 and S15. Only the presence 

of the primary and secondary r-proteins that bind the 5’ domain is not sufficient to 

acquire an architecture of 16S rRNA similar to the one in the 30S subunit. It was shown 

that the domains can assemble independently of each other, in the presence of the 

required r-proteins,38,39 but obviously there are still interdomain adjustments that take 

place and require the presence of r-proteins from other domains.   

Role of the secondary protein S16 in organizing the surroundings of Fe(II)-

C13S20. The addition of the secondary proteins S16, S5 and S12 also brings a few 

changes (see regions 60 and 350, Figure 7a, c), that augment the organization of the 16S 

rRNA surrounding the r-protein S20. The binding of all the primary proteins to the 16S 

rRNA increases the intensity of cleavage at the multiple-stem junction of helices 5, 6, 13 

and 14 (Figure 9a) but as more proteins are added, the cleavage intensity decreases. For 

the same junction, in the presence of all the primary and secondary proteins that bind to 

the 5’ domain, but in the absence of the primary r-proteins S7 and S15, the intensity of 

cleavage is the same as in the 30S subunit. By elimination, the proteins that can be 

responsible for the decrease in intensity are S5, S12 and S16. When analyzing the 

cleavage sites mentioned above (regions 60 and 350) on the three dimensional structure 

of 16S rRNA from the 30S subunit1 and the three proteins that might be responsible for 

the effect it is obvious that S16 is the most likely effector (see Figure 9b). The influence 

of S16 on the cleavage pattern can be explained in two ways, since the intensity of 

cleavage decreases. S16 is protecting the 16S rRNA from the hydroxyl radicals generated 

from C13S20, or the rRNA is rearranged at the binding of S16 and the distance between 

the probe and the rRNA is increasing. From the positioning of S16 in the structure of the 
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30S subunit (Figure 9b), the most plausible is that S16 is going to protect the rRNA from 

the hydroxyl radicals. Probably in the RNP containing Fe(II)-C13S20, the other primary 

r-proteins, and the secondary r-proteins S5, S12 and S16, the 16S rRNA has a structure 

which is the most similar to the one in the 30S subunit, around the r-protein S20.  

Fe(II)-C22S20 as a probe for the assembly of the 30S subunit. The results 

obtained from probing different complexes using as a probe Fe(II)-C22S20 are quite 

different from the ones already discussed for Fe(II)-C13S20. The comparison of the 

cleavage patterns in different RNPs containing Fe(II)-C22S20 reveals that the differences 

in the 5’ domain are minimal between particles (Figure 8a-c), while they are quite 

significant in the 3’ minor domain (Figure 8d). 

Cleavage in the 5’ domain from Fe(II)-C22S20. The different RNPs that 

contain Fe(II)-C22S20 as a probe show very similar patterns of cleavage  in the 5’ 

domain (Figure 8a-c). The only exception is in helix 6, region 80, where some notable 

differences are observed in the intensity of cleavage between the different RNPs (Figure 

8a). Remarkably, the same behavior was observed for the particles containing Fe(II)-

C13S20, and it was discussed in the previous section (see above). It seems that the 16S 

rRNA close to the derivatized cysteine residue 22 has almost the same conformation in 

the 5’ domain in the minimal complex and all the other RNPs, the final product of 

assembly, the 30S subunit, included.  

Cleavage in helix 44 from Fe(II)-C22S20. The comparison of cleavage patterns 

for Fe(II)-C22S20 containing RNPs in helix 44 shows quite a few differences (Figure 

8d). Interestingly, the minimal complex and fully assembled 30S subunit have the most 

similar cleavage pattern, although for the minimal complex the intensity is lower. 
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Probably 16S rRNA adopts very similar conformations around the probe in both the 

minimal complex and the 30S subunit. All the other RNPs examined, with intermediate 

composition, show almost no cleavage. Thus, the complexes with intermediate 

composition are quite different from the Fe(II)C22S20/16S rRNA complex and the final 

product of assembly, the fully formed 30S subunit. The two possible causes for the 

observed differences are changes in dynamics or quenching. It is probable that in the 

complexes that contain more r-proteins helix 44 is more dynamic and cleavage does not 

take place significantly. Or, quenching can take place from another protein or an element 

of the 16S rRNA, but it is a transient state, since it is not present in the 30S subunit. Thus, 

the most plausible explanation for our results is the increase in the dynamics, but further 

experiments will hopefully bring a better understanding. 

One of our hypotheses was that we will be able to observe differential interaction 

of r-protein S20 with its two binding domains during assembly of the 30S subunit with 

our approach. Even though the interaction of S20 with the 5’ domain is almost the same 

in all of the RNPs explored, significant differences were observed for the 3’ minor 

domain, suggesting that indeed along the assembly S20 interacts differentially with its 

two binding domains, 5’ domain and helix 44. 

Conclusions and future prospects 

R-protein S20 can be used as a probe to study the assembly of the 30S subunit, as 

it is shown by our results. The study of RNPs of different complexities separately can 

give information on the assembly, but it is much easier and informative to probe and 

analyze RNPs of different compositions in the same time. The two probes that were used 

to explore RNPs of different compositions gave different types of information and 
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showed the versatility of our approach. When Fe(II)-C13S20 is used as a probe in 

different RNPs, differences which are not obvious at the comparison of the minimal 

complex and 30S subunit separately emerge, along with roles for some r-proteins in the 

organization of the 16S rRNA around S20.  For Fe(II)-C22S20 differential interaction 

with 5’ domain and helix 44 during the assembly are observed. Other RNPs containing 

Fe(II)-C13S20  and Fe(II)-C22S20 will also be explored since some differences observed 

in the complexes mentioned in this study cannot be attributed to only one protein, though 

inferences can be made. The study of different RNPs containing Fe(II)-C47S20 or Fe(II)-

C55S20  will complete the picture of the assembly of the 30S subunit from the point of 

view of r-protein S20.  
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Table 1. Nucleotides at which cleavage by hydroxyl radicals is observed in the minimal 

complex and the 30S subunit, for each of the Fe(II)-derivatized S20 proteins. 

Nucleotide C13S20
/16S 

C13S20
-30S 

C22S20
/16S 

C22S20 
-30S 

C47S20 
/16S 

C47S20
-30S 

C55S20
/16S 

C55S20
-30S 

55 A w w       
56 U w w       
57 G m w       
58 C m w       
59 A m w       
60 A w w       
61 G w w       
99A  w       
100G w m       
101 A m m       
102 G m m m w     
103 U w w m w     
107 C w w       
108 G m m       
141 G     w w   
142 G      w   
143 A     w w   
144 G   w  w m   
145 G   w  w m w  
146 G w w m w w m m w 
147 G w w s m w m s m 
148 G w w v.s. s w w s s 
149 A m m v.s. v.s.   m s 
150 U m m s v.s   w m 
151 A w w m s    w 
154 U   w      
155 A w w m      
156 C w w m      
157 U w w m      
158 G w s s w     
159 G w s s w     
160 A m m s      
161 A w w w      
162 A m s m      
163 C v.s. v.s. s m   w w 
164 G v.s. v.s. s s   w w 
165 G s v.s. s s   w w 
166 U m s v.s. s   m m 
167 A w m s m   w w 
168 G w m s m   w w 
169 C  w m w   w w 
170 U  w v.s. m   m w 
171 A  w w w   w  
174 A  w m w     
175 C m s v.s. s   m w 
176 C s v.s. v.s. v.s. w  s s 
177 G m s v.s. v.s. m w s s 
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Nucleotide C13S20
/16S 

C13S20 
-30S 

C22S20
/16S 

C22S20 
-30S 

C47S20/ 
16S 

C47S20
-30S 

C55S20
/16S 

C55S20
-30S 

178 C m s s v.s. s w s s 
179 A w m m s m w w m 
180 U  w w w w  w w 
181 A   w  w    
182 A   w  w    
186 C     w w   
187 G w w w w m w  w 
188 C w w w w s m w w 
189 A w w m w s w w w 
190 A w w m w v.s. m w w 
191 G w w m w v.s. s m m 
192 A w w m w v.s. s m m 
193 C m w m w m w m w 
255 G     w w   
256 U     w w   
257 G     w w   
258 G     w w   
259 G         
260 G   m m   w w 
261 U   w w   w w 
267 C   m m   w w 
268 U   m m   w w 
269 C   m m w w w w 
270 A     w w   
271 C     w w   
272 C     w w   
273 U         
274 A         
317 U   w      
318G   m w     
319G   m w     
320A   s m    w 
321A   s s    w 
322C   m m    w 
327A   w w     
328C   w w     
332G w w m w     
333U w w m w     
334C s w s s   m m 
335C s m s s   m m 
336A m m m m   w w 
337G m w m m   m  
344  w  w     

345C  w w w   w  
346G w m s m   w w 
347G w m m m   w w 
348G m m w w   m w 
349A m m m w   w  
350G w m w w     
351G w w       
352C w        
353A w        
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Nucleotide C13S20
/16S 

C13S20 
-30S 

C22S20
/16S 

C22S20 
-30S 

C47S20/ 
16S 

C47S20
-30S 

C55S20
/16S 

C55S20
-30S 

354G w        
360G     w   m 
361G     m   m 
362G     m   m 
363A     w    
960U m        
961U m        
962C w        

1439G     w w   
1440U     w w   
1441A     w-m w-m   
1444U w m w m     
1445U m m w m   w w 
1446A w w w m   w w 
1448C     m w   
1449C     s w  w 
1450U     s w w w 
1451U     w  w  
1452C         
1453G     m w   
1454G     m w   
1455G     s s  m 
1456A     m m  m 
1457G w w   w    
1458G m m       
1459G m m w m     
1460C m s w s     
1461A  w  w     

 
w, m, s, v.s. indicate the intensity of the band at the specified nucleotide, and 

consequently the relative intensity of cleavage. w – weak, m – medium, s – strong, v.s. – 

very strong.  
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Figure 1. 16S rRNA and the in vitro 30S subunit assembly map. (a) Secondary structure 

of 16S rRNA14 with its domains in different color. In red is the 5’ domain, in green the 

central domain, in blue the 3’ major domain and in black the 3’ minor domain. (b) in 

vitro assembly map of 30S subunit with the arrows connecting RNA and proteins, or 

proteins to proteins in the colors of the different domains to which they bind. The color 

coding of the arrows is the same as for (a). The r-proteins shown in white in the dark gray 

and the light gray regions are primary and respectively secondary binding r-proteins. The 

r-proteins shown in black on the white background are tertiary binding r-proteins, 

respectively. S6 and S18 are enclosed in a box to indicate that they bind as a heterodimer.  
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Figure 2. Crystal structure of 16S rRNA and r-protein S20 from the E. coli 30S subunit.1   

(a) and (b) two views of the three dimensional structure of 16S rRNA and r-protein S20. 

16S rRNA is shown in gray, with the 3’ minor domain (helices 44 and 45) in black, and 

S20 in yellow. The cysteine substitution positions are shown: 13 in red, 22 in blue, 47 in 

pink and 55 in green. (c) and (d) Blow-up of the bottom portion of the 30S subunit. (e) 

and (f) two views of the structure of S20 (taken from (a) and (b) respectively) with sites 

of cysteine substitutions indicated. All figures containing 3-D structures were prepared 

using Pymol,40 and the pdb file 2AW7. 
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Figure 3. Directed hydroxyl radical cleavage of 16S rRNA from Fe(II)–S20 in Fe(II)–

S20/16S rRNA complexes and Fe(II)–S20-30S analyzed by primer extension. A and G 

are sequencing lanes. The other lanes are Fe(II)–S20/16S rRNA complexes (a and c) or 

Fe(II)–S20-30S (b and d) containing: wt S20 (lane 3), Fe(II)-C13S20 (lane 4), Fe(II)-

C22S20 (lane 5), Fe(II)-C47S20 (lane 6), Fe(II)-C55S20 (lane 7). The primers used are 

232 for (a) and (b) and 1508 for (c) and (d). 
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Figure 4. Hydroxyl radical cleavage sites shown on the secondary structure of 16S 

rRNA. (a) Secondary structure of 16S rRNA. The box contains the elements of the 5’ 

domain and of the 3’ minor domain used to represent cleavage sites in (b)-(e). The filled 

circles indicate positions of cleavage from Fe(II) derivatized S20 proteins in the minimal 

complex containing: (b) Fe(II)-C13S20, (c) Fe(II)-C22S20, (d) Fe(II)-C47S20 and (e) 

Fe(II)-C55S20. The color coding is the same as in Figure 2, C13S0 in red, C22S0 in blue, 

C47S20 in pink and C55S20 in green. 
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Figure 5. Hydroxyl radical cleavage sites mapped on to lower part of the three-

dimensional structure of 16S rRNA from E. coli 30S ribosomal subunit.16S rRNA is 

shown in gray, with the 3’ minor domain (helices 44 and 45) in black, and S20 in yellow. 

The cleavage sites are represented as spheres, and the size of the sphere reflects the 

intensity of cleavage. For each Fe(II) derivatized S20 protein, there are four structures 

grouped for a better comparison: two views (180o rotation) of the lower part of 16S 

rRNA with the cleavage sites from Fe(II) derivatized S20 protein for the minimal 

complex and two views (180o rotation) for the fully assembled 30S subunit (the structure 

of the r-protein S20 with the specified residue in the appropriate color is included). (a)-

(d) Fe(II)C13S20 (cleavage sites - red spheres): (a) and (b) minimal complex Fe(II)-

C13S20/16S rRNA, (c) and (d) Fe(II)-C13S20-30S; (e)-(h) Fe(II)-C22S20 (cleavage sites 

- blue spheres): (e) and (f) minimal complex Fe(II)-C22S20/16S rRNA, (g) and (h) 

Fe(II)-C22S20-30S; (i)-(l) Fe(II)-C47S20 (cleavage sites - pink spheres): (i) and (j) 

minimal complex Fe(II)-C47S20/16S rRNA, (k) and (l) Fe(II)-C47S20-30S; and (m)-(p) 

Fe(II)-C55S20 (cleavage sites - green spheres): (m) and (n) minimal complex Fe(II)-

C55S20/16S rRNA, (o) and (p) Fe(II)-C55S20-30S. 
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Figure 6. Crystal structure of the 16S rRNA from the E. coli 30S subunit with all the 

primary r-proteins and the secondary binding r-proteins S5, S12 and S16. The 16S rRNA 

is shown in gray with the 3’ minor domain (helices 44 and 45 in black), and the r-proteins 

are S4 green, S5 orange, S7 red, S8 pink, S12 brown, S15 lime green, S16 blue, S17 

purple and S20 yellow. (a) solvent view of the 30S subunit. (b) 180o rotation, interface 

view of the 30S subunit. 
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Figure 7. Directed hydroxyl probing of RNPs of different complexities containing Fe(II)-

C13S20 analyzed by primer extension. The sites of cleavage are indicated by the lines on 

the side of the gels. The lanes correspond to: sequencing lanes (lanes 1 and 2), and the 

complexes Fe(II)-C13S20/16S rRNA ( lane 3), Fe(II)-C13S20/1o/16S rRNA (1o mixture 

contains S4, S7, S8, S15 and S17) (lane 4), Fe(II)-C13S20/1o/S12+S16+S5/16S rRNA 

(lane 5), Fe(II)-C13S20/5’/16S rRNA (5’mixture contains S4, S8, S17, S16, S12, S5) 

(lane 6) and Fe(II)-C13S20-30S (lane 7). (a) primer 232 – upper part of the gel, (b) 

primer 232 – lower part of the gel, (c) primer 480, (d) primer 1508 and (e) primer 1508 –

lower part of the gel.  
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Figure 8. Directed hydroxyl probing of RNPs of different complexities containing Fe(II)-

C22S20 analyzed by primer extension. The sites of cleavage were differences between 

different RNPs are observed are indicated by lines on the side of the gels. The lanes 

correspond to: sequencing lanes (lanes 1 and 2), and the complexes Fe(II)-C22S20/16S 

rRNA ( lane 3), Fe(II)-C22S20/1o/16S rRNA (1o mixture contains S4, S7, S8, S15 and 

S17) (lane 4), Fe(II)-C22S20/1o/S12+S16+S5/16S rRNA (lane 5), Fe(II)-C22S20/5’/16S 

rRNA  (5’ contains S4, S8, S17, S16, S12, S5) (lane 6) and Fe(II)-C22S20-30S (lane 7). 

(a) primer 232 – upper part of the gel, (b) primer 232 – lower part of the gel, (c) primer 

480, (d) primer 1508. 
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Figure 9. Changes in the intensity of cleavage from C13S20 protein attributed to S16. (a) 

The blue filled circles indicate nucleotides that become protected from cleavage at 

assembly of S1, on the secondary structure of 16S rRNA. (b) Three dimensional structure 

of 16S rRNA shown in gray, from 30S subunit, with S5 orange, S12 brown, S16 blue and 

S20 yellow. The blue spheres represent the nucleotides indicated on the secondary 

structure (a). 
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Chapter VIII. RNA-protein interactions in the 30S ribosomal 

subunit. General summary and future directions  

General summary 

The complex composition of the 30S ribosomal subunit, 21 ribosomal proteins (r-

proteins) and 16S ribosomal RNA (rRNA), makes the study of its assembly a non-trivial 

problem. Conformational changes in the structure of 16S rRNA are a very important part 

of the assembly process of the 30S ribosomal subunit.1-4 In the previous two chapters 

results obtained by applying two of the methods routinely used in our laboratory to study 

conformational rearrangements of 16S rRNA during assembly are presented. Both of 

these methods are using chemical reagents, in particular base-specific probes which 

modify selectively, like dimethyl sulfate and ketoxal, and hydroxyl radicals which cleave 

the RNA backbone nonspecifically. Base-specific footprinting of minimal complexes at 

different temperatures made it possible to distinguish between conformational changes in 

16S rRNA that require only the r-protein and the ones that require both the r-protein and 

heating. Directed hydroxyl radical probing from r-protein S20 of ribonucleoprotein 

particles (RNPs) of different complexities gave insight into reorientation of the rRNA 

elements as a result of protein binding. 

Base-specific chemical footprinting was used to dissect the temperature 

dependence of 16S rRNA architecture in individual complexes with the primary r-

proteins (S7, S8, S15, S17 and S20). The results published earlier for the sixth primary 

binding r-protein S45 are reanalyzed in the light of the crystal structure of the 30S 

subunit6 which is now available, and integrated with our data for the other primary 
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binding protein/16S rRNA RNPs. As expected, all r-proteins can bind 16S rRNA at low 

temperature. However not all r-proteins/16S rRNA complexes behave in the same way. 

As discussed earlier, some RNPs acquire the same conformation regardless of 

temperature (RNPs containing S17 and S20), others show minor adjustments in 16S 

rRNA conformation upon heating (RNPs containing S8 and S15), and finally in others 

16S rRNA undergoes significant temperature-dependent conformational changes (RNPs 

containing S4 and S7). Our results correlate very well with the structural and biochemical 

data available on the 30S subunit. Studies of the in vitro assembly of 30S subunit showed 

that the rate of assembly is strongly temperature dependent,7 and three distinct stages of 

assembly have been observed, by using the appropriate temperature regime. The rate 

determining step is a temperature dependent structural rearrangement of the first 

reconstitution intermediate, which contains all the primary binding r-proteins. 

Intermediates similar to those observed in vitro have been detected in vivo8 and strains 

with ribosome biogenesis defects are often cold sensitive.9 Thus it appears that the 

temperature-dependent conformational rearrangements of the minimal RNPs that we 

studied may reflect inherent properties of the 30S subunit assembly in vitro and of 

ribosome biogenesis. 

The study of r-protein/16S rRNA binary complexes often gives more detailed 

information on the RNP, than assembly studies using a full complement of r-proteins, as 

it was observed in the case of S7, S8 and S15.10 In the ensemble study at low 

temperature, the footprints specific for certain r-proteins cannot be observed and the 

conclusions are not as accurate as when minimal complexes are studied.10 Also, our 

approach made it possible to distinguish temperature-dependent stages in the interaction 
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of 16S rRNA with the r-proteins S4 and S7. Thus our approach makes possible a better 

understanding of the interaction between 16S rRNA and r-proteins in particular and 

RNA-protein interactions in general.  

Especially intriguing are the conformational rearrangements in 16S rRNA that 

take place at some distance from the interaction site, which require the presence of both 

the r-protein and temperature. These long distance effects in 16S rRNA can organize the 

binding site of other r-proteins that assemble in a sequential manner, modulate 

interdomain interactions or bring the 16S rRNA into a correct functional conformation. 

The differential interaction of 16S rRNA with r-proteins illustrates a means for 

controlling the sequential assembly pathway for complex RNPs and gives insights into 

some aspects of RNP assembly.  

Another approach that proved very useful in the study of conformational 

rearrangements of 16S rRNA during assembly is directed hydroxyl radical probing.11 

Hydroxyl radicals generated around the probe, Fe(II)-derivatized S20 protein, cleave 16S 

rRNA and  reveal its architecture. An analysis of the cleavage patterns in the minimal 

complexes and the fully assembled 30S subunit shows intriguing similarities and 

differences. The study of RNPs of different complexities separately can give information 

on the assembly, but it is much easier and informative to probe and analyze RNPs of 

different compositions in the same time. The two probes (Fe(II)-C13S20 and Fe(II)-

C22S20) that were used to explore RNPs of different compositions gave useful 

information and show the versatility of our approach. Interestingly, in some cases the 

presence of r-proteins that bind at some distance from S20, to other domains of 16S 

rRNA than the 5’ domain influence the cleavage pattern. Roles for different r-proteins 
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emerge from the preliminary results of this study and future experiments will give a 

better understanding of the assembly process and of the roles of r-proteins.  

 Both base-specific footprinting and directed hydroxyl probing illustrate the 

complexity of the 30S subunit assembly process and the importance of r-proteins in 

articulating this process. Assembly of r-proteins influences not only the immediate 

surroundings, but also long distance rearrangements of 16S rRNA that sometime involve 

simultaneous fulfillment of multiple requirements. Formation of functional small 

ribosomal subunits involves a series of consecutive events that are controlled by different 

means, as the presence of a certain protein or the right temperature. 

Future directions 

Temperature-dependent rearrangements in RNPs containing 16S rRNA. 

Only binary RNPs containing each of the six primary r-proteins were investigated at 

different temperatures. There are many possible RNPs containing 16S rRNA that can be 

analyzed by base-specific chemical footprinting to obtain a more detailed picture of the 

changes that take place in the architecture of 16S rRNA. For example RNPs containing 

S16, a secondary binding r-protein are likely candidates for this type of studies. As 

mentioned in chapter VI, it was shown that S16 plays a very important role in the heat 

activated transition of the first reconstitution intermediate (RI) to the second 

reconstitution intermediate RI*.12 Assembly of S16 requires prior binding of primary r-

proteins S4 and S2013, and S16 has footprints14 and direct contacts6 with 16S rRNA both 

in the 5’ and central domain. The binary RNPs containing S4 or S20 along with 16S 

rRNA behave very differently. In the S20/16S rRNA complex 16S rRNA attains the same 

conformation at low or high temperature, while for S4, the two conformations are very 
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different. How will RNPs containing different combinations of the three r-proteins 

behave? Does S16 bind sequentially to the 5’ and central domain? Is binding of S16 to 

the two different domains controlled by temperature, by the presence of one or both of 

the primary r-protein or it requires a combination of factors?  

Exploring the assembly of 30S subunit with directed hydroxyl radical 

probing. A complete picture of the 16S rRNA rearrangements during assembly around 

S20, in the 5’ domain, will be obtained by performing probing of RNPs of different 

complexities with Fe(II)C47S20 and Fe(II)C55S20. But, there are other r-proteins that 

can be used as probes and may reveal changes that take place in other domains of 16S 

rRNA. S15 was used to probe the assembly of the central domain,3,15 and the other 

primary r-proteins can be used to examine the assembly of the other domains. R-proteins 

S4 and S7 are especially important because they are considered assembly initiators,16 and 

S7 is the only primary r-protein that binds to the 3’ major domain. S8 may play an 

important role in the alignment of the platform (central domain) and the body (5’ 

domain). Probing from secondary binding r-proteins like S5, S16 and S12 that bind 

multiple 16S rRNA domains6 can reveal more details on the importance of interdomain 

alignment during the assembly process. 
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